Skip to main content
Log in

The function of proteins that interact with mRNA

  • Current Thinking
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preobrazhensky AA, Spirin AS: Informosomes and their protein components: the present state of knowledge. Prog Nucl Acid Res Mol Biol 21:21–37, 1978.

    Google Scholar 

  2. Vincent A, Goldenberg S, Standart N, Civelli O, Imaizumi T, Maundrell K, Scherrer K: Potential role of mRNP proteins in cytoplasmic control of gene expression in duck erythroblasts. Mol Biol Rep 7:71–81, 1981.

    Google Scholar 

  3. Bag J, Sells BH: Cytoplasmic nonpolysomal ribonucleoprotein complexes and translational control. Mol Cell Biochem 40:129–141, 1981.

    Google Scholar 

  4. Greenberg JR, Setyono B: Messenger ribonucleoproteins: their composition, metabolic properties, and relationship to nuclear ribonucleoproteins as investigated by RNAprotein crosslinking. Biol Cell 41:67–78, 1981.

    Google Scholar 

  5. Spirin AS, Ajtkhozhin MA: Informosomes and polyribosome-associated proteins in eukaryotes. Trends Biochem Sci 10:162–165, 1985.

    Google Scholar 

  6. Greenberg JR: Ultraviolet light-induced crosslinking of mRNA to proteins. Nucl Acid Res 6:715–732, 1979.

    Google Scholar 

  7. Wagenmakers AJM, Reinder RJ, Van Venrooij WJ: Cross-linking of mRNA to proteins by irradiation of intact cells with ultraviolet light. Eur J Biochem 112:323–330, 1980.

    Google Scholar 

  8. Setyono B, Greenberg JR: Proteins associated with poly(A) and other regions of mRNA and ImRNA molecules as investigated by crosslinking. Cell 34:775–783, 1981.

    Google Scholar 

  9. Rosenfeld MG, Barrieux A: Messenger RNA binding protein purified from reticulocyte polyribosomes. Biochemistry 16:514–578, 1977.

    Google Scholar 

  10. Greenberg JR: The polyribosomal mRNA-protein complex is a dynamic structure. Proc Natl Acad Sci USA 78:2923–2926, 1981.

    Google Scholar 

  11. Auerbach S, Pedeson T: Metabolic stability of messenger ribonucleoprotein in HeLa cells. Biochim Biophys Acta 395:388–391, 1975.

    Google Scholar 

  12. Greenberg JR, Carroll E: Reconstitution of functional mRNA protein complexes in a rabbit reticulocyte cell-free translation system. Mol Cell Biol 5:342–351, 1985.

    Google Scholar 

  13. Gaedigk R, Oehler S, Kohler K, Setyono B: In vitro reconstitution of messenger ribonucleoprotein particles for globin messenger RNA and cytosol proteins. FEBS Lett 179:201–207, 1985.

    Google Scholar 

  14. Van Venrooij WJ, Riemen T, Van Eekelen CAG: Host proteins are associated with adenovirus specific mRNA in the cytoplasm. FEBS Lett 145:62–66, 1982.

    Google Scholar 

  15. Lindberg U, Sundquist B: Isolation of messenger ribonucleoproteins from mammalian cells. J Mol Biol 86:451–468, 1974.

    Google Scholar 

  16. Dubochet J, Morel C, Lebleu B, Herzberg M: Structure of globin mRNA and mRNA-protein particles. Eur J Biochem 36:465–472, 1973.

    Google Scholar 

  17. Goldenberg S, Vincent A, Scherrer K: Evidence for the protection of specific RNA sequences in globin messenger ribonucleoprotein particles. Nucl Acid Res 6:2787–2797, 1979.

    Google Scholar 

  18. Patton JR, Chae CB: A method for mapping initiation, termination, splice, and protein binding sites. J Biol Chem 258:3991–3995, 1983.

    Google Scholar 

  19. Chae CB, Patton JR: Chicken reticulocyte polysomal messenger RNA-protein complex: absence of bound proteins in most of the coding region of R-globin mRNA. Nucl Acid Res 12:5693–5706, 1984.

    Google Scholar 

  20. Ruzdijic S, Bag J, Sells BH: Cross-linked proteins associated with a specific mRNA in the cytoplasm of HeLa cells. Eur J Biochem 142:239–245, 1984.

    Google Scholar 

  21. Ruzdijic SD, Bird RC, Jacobs FA, Sells BH: Specific mRNP complexes: Characterization of the proteins bound to histone H4 mRNAs isolated from L6 myoblasts. Eur J Biochem 153:587–594, 1985.

    Google Scholar 

  22. Johnson TR, Ilan J: Hybrid selection of messenger ribonucleoprotein for serum albumin: analysis of specific message-bound proteins. Proc Natl Acad Sci USA 82:7327–7329, 1985.

    Google Scholar 

  23. Kish VM, Pederson T: Poly A-rich ribonucleoprotein complexes from HeLa cell messenger RNA. J Biol Chem 251:5888–5894, 1976.

    Google Scholar 

  24. Greenberg JR: Proteins crosslinked to messenger RNA by irradiating polyribosomes with ultraviolet light. Nucl Acid Res 8:5685–5701, 1980.

    Google Scholar 

  25. Baer BW, Kornberg RD: The protein responsible for the repeating structure of cytoplasmic poly Aribonucleoprotein. J Cell Biol 96:717–721, 1983.

    Google Scholar 

  26. Barrieux A, Ingraham HA, Nystul S, Rosenfeld MG: Characterization of the association of specific proteins with messenger ribonucleic acid. Biochemistry 15:3525–3528, 1976.

    Google Scholar 

  27. Blobel G: A protein of molecular weight 78000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci USA 70:924–928, 1973.

    Google Scholar 

  28. Vincent A, Goldenberg S, Scherrer K: Comparisons of proteins associated with duck-globin mRNA and its polyadenylated segment in polyribosomal and repressed free messenger ribonucleoprotein complexes. Eur J Biochem 114:179–193, 1981.

    Google Scholar 

  29. Van Venrooij WG, Van Eekelen CAG, Jansen RTP, Princen JMG: Specific poly-A-binding protein of 76000 molecular weight in polyribosomes is not present on poly A of free cytoplasm mRNP. Nature 270:189–191, 1977.

    Google Scholar 

  30. Jain SK, Sarkar S: Poly(riboadenylate)-containing messenger ribonucleoprotein particles of chick embryonic muscles. Biochemistry 18:745–753, 1979.

    Google Scholar 

  31. Jeffrey WR: Characterization of polypeptides associated with messenger RNA and its polyadenylate segment in Ehrlich ascites messenger ribonucleoprotein. J Biol Chem 252:3525–3532, 1977.

    Google Scholar 

  32. Cardelli J, Pitot HC: Isolation and characterization of rat liver free and membrane-bound polysomal messenger ribonucleoprotein particles. Biochemistry 16:5127–5134, 1977.

    Google Scholar 

  33. Schwartz H, Darnell JE: The association of protein with the polyadenylic acid of HeLa cell messenger RNA: evidence for a “transport” role of a 75000 molecular weight polypeptide. J Mol Biol 104:833–851, 1976.

    Google Scholar 

  34. Slegers H, De Herdt E, Kondo M: Non-polysomal poly(A)-containing messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia salina. Eur J Biochem 117:111–120, 1981.

    Google Scholar 

  35. Shatkin AJ: mRNA cap binding proteins: essential factors for initiating translation. Cell 40:223–224, 1985.

    Google Scholar 

  36. Banerjee AK: 5′-terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol Rev 44:175–205, 1980.

    Google Scholar 

  37. Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ: A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. Proc Natl Acad Sci USA 75:4843–4847, 1978.

    Google Scholar 

  38. Furuichi Y, La Fiandra A, Shatkin AJ: 5′-terminal structure and mRNA stability. Nature 266:235–238, 1977.

    Google Scholar 

  39. Sonenberg N: ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′-end of eukaryotic mRNA. Nucl Acid Res 9:1643–1656, 1981.

    Google Scholar 

  40. Chakraborty D, Mukherjee AK, Sarkar S, Lee KAW, Darveau A, Sonenberg N: Association of cap binding protein-related polypeptides with cytoplasmic RNP particles of chick embryonic muscle. FEBS Lett 149:29–35, 1982.

    Google Scholar 

  41. Liamard JP, Setyono B, Spindler E, Kohler K: Comparison of proteins bound to the different functional classes of messenger RNA. Biochim Biophys Acta 425:373–383, 1976.

    Google Scholar 

  42. Adams DS, Noonan D, Jeffery WR: Stored messenger ribonucleoprotein particles in differentiated sclerotia of Physarum polycephalum. Differentiation 20:177–187, 1981.

    Google Scholar 

  43. Darnborough CH, Ford PJ: Cell-free translation of messenger RNA from oocytes of Xenopus Nevis. Devel Biol 50:285–301, 1976.

    Google Scholar 

  44. Rosbach M, Ford PJ: Polyadenylic acid-containing RNA in Xenopus laevis oocytes. J Mol Biol 85:87–101, 1974.

    Google Scholar 

  45. Darnborough CH, Ford PJ: Identification in Xenopus laevis of a class of oocyte-specific proteins bound to messenger RNA. Eur J Biochem 113:415–424, 1981.

    Google Scholar 

  46. Lake M: The relationship between polyribosomal and latent membrane-bound messenger RNP particles in Artemia embryos. Int J Biochem 16:1015–1022, 1984.

    Google Scholar 

  47. Moon RT:Poly(A)-containing messenger ribonucleoprotein complexes from sea urchin eggs and embryos: polypeptides associated with native and UVcrosslinked mRNPs. Differentiation 24:13–23, 1983.

    Google Scholar 

  48. Vincent A, Akhayat O, Goldenberg S, Scherrer K: Differential repression of specific mRNA in erythroblast cytoplasm: a possible role for free mRNP proteins. EMBO 2:1869–1876, 1983.

    Google Scholar 

  49. Brawerman G: The role of poly(A) sequences in mammalian messenger RNA. CRC Crit Rev Biochem 10:1–38, 1981.

    Google Scholar 

  50. Jeffrey WR, Adams DS, Noonan D: Cytoplasmic processing events in the polyadenylate region of Physarum messenger RNA. Mol Biol Rep 7:63–70, 1981.

    Google Scholar 

  51. Kleene KC, Distel RJ, Hecht NB: Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Devel Biol 105:71–79, 1984.

    Google Scholar 

  52. Bergmann IE, Brawerman G: Control of breakdown of the polyadenylate sequence in mammalian polyribosomes: role of poly(adenylic acid)-protein interactions. Biochemistry 16:259–264, 1977.

    Google Scholar 

  53. Dreyfuss G, Adam SA, Choi YD: Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol 4:415–423, 1984.

    Google Scholar 

  54. Cereghini S, Geoghegan T, Bergmann I, Brawerman G: Studies on the efficiency of translation and on the stability of actin messenger ribonucleic acid in mouse sarcoma ascites cells. Biochemistry 18:3153–3159, 1979.

    Google Scholar 

  55. Kessler-Icekson G, Singer RH, Yaffe D: The capacity of polyadenylated RNA from myogenic cells treated with actinomycin D to direct protein synthesis in a cell-free system. Eur J Biochem 88:403–410, 1978.

    Google Scholar 

  56. Hershey JWB, Duncan R, Etchison DO, Milburn SC: The role of initiation factors in translational control. In: Clark BFC, Petersen HU (eds). Gene Expression. Munksgaard, Copenhagen, 1984, pp 58–76.

    Google Scholar 

  57. Walden WE, Godefroy-Colburn T, Thach RE: The role of mRNA competition in regulating translation I, Demonstration of competition in vivo. J Biol Chem 256:11739–11746, 1981.

    Google Scholar 

  58. Ray A, Walden WE, Brendler T, Zenger VE, Thach RE: Effect of medium hypertoxicity on reovirus translation rates. An application of kinetic modelling in vivo. Biochemistry 24:7525–7532, 1985.

    Google Scholar 

  59. Walden WE, Thach RE: Translational control of gene expression in a normal fibroblast. The role of messenger RNA competition and repression. Biochemistry (in press), 1986.

  60. Bergmann IE, Cereghini S, Geoghegan T, Brawerman G: Functional characteristics of untranslated messenger ribonucleoprotein particles from mouse sarcoma ascites cells. Possible relation to the control of messenger RNA utilization. J Mol Biol 156:567–582, 1982.

    Google Scholar 

  61. Liautard JP, Egly JM: In vitro translation studies of the cytoplasmic nonpolysomal particles containing messenger RNA. Nucl Acid Res 8:1793–1804, 1980.

    Google Scholar 

  62. Godefroy-Colburn T, Thach RE: The role of mRNA competition in regulating translation IV. Kinetic model. J Biol Chem 256:11762–11773, 1981.

    Google Scholar 

  63. Golini F, Thack SS, Birge CH, Safer B, Merrick WC, Thach RE: Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory initiation factor. Proc Natl Acad Sci USA 73:3040–3044, 1976.

    Google Scholar 

  64. Kabat D, Chappell MR: Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J Biol Chem 252:2684–2690, 1977.

    Google Scholar 

  65. Rosen H, Di Segni G, Kaempfer R: Translational control by messenger RNA competition for eukaryotic initiation factor 2. J Biol Chem 257:946–952, 1982.

    Google Scholar 

  66. Palatnik CM, Wilkins C, Jacobson A: Translational control during early Dictyostelium development: possible involvement of poly A sequences. Cell 36:1017–1025, 1984.

    Google Scholar 

  67. Jenkins NA, Kaumeyer JF, Young EM, Raff RA: A test for masked message: the template activity of messenger ribonucleoprotein particles isolated from sea urchin eggs. Devel Biol 63:279–298, 1978.

    Google Scholar 

  68. Ilan J, Ilan J: Translation of maternal messenger ribonucleoprotein particles from sea urchin in a cell-free system from unfertilized eggs and product analysis. Devel Biol66:375–385, 1978.

    Google Scholar 

  69. Geoghegan T, Cereghini S, Brawerman G: Inactive mRNA-protein complexes from mouse sarcoma-180 ascites cells. Proc Natl Acad Sci USA 76:5587–5591, 1979.

    Google Scholar 

  70. Wahba AJ, Woodley CL: Molecular aspects of development in the brine shrimp Artemia. Prog Nucl Acid Res Mol Biol 31:221–226, 1984.

    Google Scholar 

  71. Sinclair GD, Dixon GH: Purification and characterization of cytoplasmic protamine messenger ribonucleoprotein particles from rainbow trout testis cells. Biochemistry 21:1869–1877, 1982.

    Google Scholar 

  72. Civelli O, Vincent A, Maundrell K, Buri JF, Scherrer K: The translational repression of globin mRNA in free cytoplasmic ribonucleoprotein complexes. Eur J Biochem 107:577–585, 1980.

    Google Scholar 

  73. Bag J, Sarkar S: Studies on a nonpolysomal ribonucleoprotein coding for myosin heavy chains from chick embryonic muscles. J Biol Chem 251:7600–7609, 1976.

    Google Scholar 

  74. Bag J, Sells BH: Heterogeneity of the non-polyribosomel cytoplasmic (free) mRNA-protein complexes of embryonic chick muscle. Eur J Biochem 99:507–516, 1979.

    Google Scholar 

  75. Schmid HP, Kohler K, Setyono B: Possible involvement of messenger RNA-associated proteins in protein synthesis. J Cell Biol 98:893–898, 1982.

    Google Scholar 

  76. Schmid HP, Kohler K, Setyono B: Interaction of cytoplasmic messenger RNA with proteins: their possible function in the regulation of translation. Mol Biol Rep 9:87–90, 1983.

    Google Scholar 

  77. Vlasik TN, Ovchinnikov LP, Radjabov KhM, Spirin AS: Translation factors of the wheat embryo extract are RNAbinding proteins. FEBS Lett 88:18–20, 1978.

    Google Scholar 

  78. Ovchinnikov LP, Spirin AS, Erni B, Staehelin T: RNAbinding proteins of rabbit reticulocytes contain the two elongation factors and some of the initiation factors of translation. FEBS Lett 88:21–26, 1978.

    Google Scholar 

  79. Setyono B, Schmid HP, Kohler K: The role of acidic proteins from cytoplasmic fraction of Krebs II ascites cells for efficient translation. Z Naturforsch 34c:64–75, 1979.

    Google Scholar 

  80. De Herdt E, Piot E, Wahba A, Slegers H: Initiation factor eIF2 associated with non-polysomal poly A-containing messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia salina. Eur J Biochem 151:455–460, 1985.

    Google Scholar 

  81. Pohlreich P, Hradec J: The postribosomal particle of rabbit liver contains protein synthesis factors and serum albumin mRNA. Biochem Biophys Res Comm 113:868–875, 1983.

    Google Scholar 

  82. Bag J, Sells BH: The presence of protein kinase activity and acceptors of phosphate groups in nonpolysomal cytoplasmic messenger ribonucleoprotein complexes of embryonic chicken muscle. J Biol Chem 254:3137–3140, 1979.

    Google Scholar 

  83. Cardelli J, Pitot HC: Characterization of protein kinase activity associated with rat liver polysomal messenger ribonucleoprotein particles. Biochemistry 19:3164–3169, 1980.

    Google Scholar 

  84. Egly JM, Schmitt M, Elkaim R, Kempf J: Protein kinases and their protein substrates in free messenger ribonucleoprotein particles and polysomes from mouse plasmacytoma cells. Fur Biochem 118:379–387, 1981.

    Google Scholar 

  85. Rittschof D, Traugh JA: Identification of casein kinase II and phosphorylated proteins associated with messenger ribonucleoprotein particles reticulocytes. Eur J Biochem 123:333–336, 1982.

    Google Scholar 

  86. Thoen C, Van Hove L, Piot E, Slegers H: Purification and characterization of the messenger ribonucleoprotein associated casein kinase II of Artemia salina cryptobiotic gastrulae. Biochim Biophys Acta 783:105–113, 1984.

    Google Scholar 

  87. De Herdt E, Thoen C, Van Hove L, Roggen E, Piot E, Slegers H: Identification and properties of the 38000 M, poly(A)-binding protein of non-polysomal messenger ribonucleoproteins of cryptobiotic gastrulae of Artemia salina. Eur J Biochem 139:155–162, 1984.

    Google Scholar 

  88. Lee H, Iglewski WJ: Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomones toxin A. Proc Natl Acad Sci USA 81:2703–2707, 1984.

    Google Scholar 

  89. Elkaim R, Thomassin H, Niedergang C, Egly JM, Kempf J, Mandel P: Adenosine diphosphate ribosyltransferase and protein acceptors associated with cytoplasmic free messenger ribonucleoprotein particles. Biochim 65:653–659, 1983.

    Google Scholar 

  90. Thomassin H, Niedergang C, Mandel P: Characterization of the poly(ADP-ribose) polymerase associated with free cytoplasmic mRNA-protein particles. Biochem Biophys Res Comm 133:654–661, 1985.

    Google Scholar 

  91. Heywood SM, Kennedy DS: Purification of myosin translational control RNA and its interaction with myosin messenger RNA. Biochemistry 15:3314–3319, 1976.

    Google Scholar 

  92. Jelinek W, Leinwand L: Low molecular weight RNAs hydrogen bonded to nuclear and cytoplasmic poly Aterminated RNA from cultured Chinese hamster ovary cells. Cell 15:205–214, 1978.

    Google Scholar 

  93. Bag J, Hubley M, Sells BH: A cytoplasmic ribonucleoprotein complex containing a small RNA inhibitor of protein synthesis. J Biol Chem 255:7055–7058, 1980.

    Google Scholar 

  94. Kuhn B, Villringer A, Falk H, Heinrich PC: Inhibition of cell-free protein synthesis by low molecular weight RNAs from free cytoplasmic ribonucleoprotein particles. Eur J Biochem 126:181–188, 1982.

    Google Scholar 

  95. Eller MS, Cullinan RE, McGuire PM: Isolation and characterization of a translation inhibitor from human term placenta. Arch Biochem Biophys 232:526–537, 1984.

    Google Scholar 

  96. Harland R, Weintraub H: Translation of mRNA injected into Xenopus oocytes is specifically inhibited by anti-sense RNA. J Cell Biol 101:1094–1099, 1985.

    Google Scholar 

  97. Melton DA: Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci USA 82:144–148, 1985.

    Google Scholar 

  98. Moon RT, Danilchik MO, Hille MB: An assessment of the masked message hypothesis: sea urchin egg messenger ribonucleoprotein complexes are efficient templates for in vitro protein synthesis. Devel Biol 93:389–403, 1982.

    Google Scholar 

  99. Constantini FD, Britten RJ, Davidson EH: Message sequences and short repetitive sequences are interspersed in sea urchin egg poly(A) + RNAs. Nature 287:111–117, 1980.

    Google Scholar 

  100. Anderson DM, Richter JD, Chamberlain ME, Price DH, Britten RJ, Smith LD, Davidson EH: Sequence organization of the poly(A) RNA synthesized and accumulated in lampbrush chromosome stage Xenopus laevis oocytes. J Mol Biol 155:281–309, 1982.

    Google Scholar 

  101. Woodland HR: Changes in the polysome content of developing Xenopus laevis embryos. Devel Biol 40:90–101, 1974.

    Google Scholar 

  102. Richter JD, Smith LD, Anderson DM, Davidson EH: Interspersed poly(A) RNAs of amphibian oocytes are not translatable. J Mol Biol 173:227–241, 1984.

    Google Scholar 

  103. Dearsly AL, Johnson RM, Barrett P, Sommerville J: Identification of a 60K-Da phosphoprotein that binds stored messenger RNA of Xenopus oocytes. Eur J Biochem 150:95–103, 1985.

    Google Scholar 

  104. Kloetz PM, Johnson RM, Sommerville J: Interaction of the hnRNA of amphibian oocytes with fibril-forming proteins. Eur J Biochem 127:301–308, 1982.

    Google Scholar 

  105. Stepanov AS, Kandor KV, Elizarov SM: Protein kinase activity in RNA-binding proteins of Amphibia oocytes. FEBS Lett 141:157–160, 1982.

    Google Scholar 

  106. Richter JD, Smith LD: Reversible inhibition of translation by Xenopus oocyte-specific proteins. Nature 309:378–380, 1984.

    Google Scholar 

  107. Lake M, Hultin T: Characterization of a poly(A)+ RNA-containing structural component directly associated with cytoplasmic membranes in dormant Artemia cysts. Biochim Biophys Acta 606:286–295, 1980.

    Google Scholar 

  108. Walker PR, Whitfield JF: Cytoplasmic microtubules are essential for the formation of membrane-bound polyribosomes. J Biol Chem 260:765–770, 1985.

    Google Scholar 

  109. Bryan J, Nagle BW, Doenges KH: Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci USA 72:3570–3574, 1975.

    Google Scholar 

  110. Schroder HC, Bernd A, Zahn RK, Muller WEG: Interaction of polyribosomal components and polyribonucleotides with microtubule proteins. Mol Biol Rep 8:233–237, 1982.

    Google Scholar 

  111. Schroder HC, Bernd A, Zahn RK, Muller WEG: Binding of polyribonucleotides and polydeoxyribonucleotides to bovine brain microtubule protein: age-dependent modula tion via phosphorylation of high-molecular-weight microtubule-associated proteins and tau proteins. Mech Ageing Devel 24:101–117, 1984.

    Google Scholar 

  112. Jeffrey WR, Tomlinson CR, Brodeur RD: Localization of actin messenger RNA during early ascidian development. Devel Biol 99:408–417, 1983.

    Google Scholar 

  113. Jeffrey WR, Wilson L: Localization of messenger RNA in the cortex of Chaetopterus eggs and early embryos. J Embryol Exp Morphol 75:225–239, 1983.

    Google Scholar 

  114. Jeffrey WR: The spatial distribution of maternal mRNAs is determined by a cortical cytoskeletal domain in Chaetopterus eggs. Devel Biol 110:217–229, 1985.

    Google Scholar 

  115. Franz JK, Gall L, Williams MA, Bertrand P, Franke WW: Intermediate-size filaments in a germ cell. Expression of cytokeratin in oocytes and eggs of the frog Xenopus laevis. Proc Natl Acad Sci USA 80:6254–6258, 1983.

    Google Scholar 

  116. Gall L, Picheral B, Gounon P: Cytochemical evidence for the presence of intermediate filaments and microfilaments in the egg of Xenopus laevis. Biol Cell 47:331–342, 1983.

    Google Scholar 

  117. Moon RT, Nicosia RF, Olsen C, Hille MB, Jeffrey WR: The cytoskeletal framework of sea urchin eggs and embryos: developmental changes in the association of messenger RNA. Devel Biol 95:447–458, 1983.

    Google Scholar 

  118. Brown S, Levinson W, Spudich JA: Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J Supromolec Struct 5:119–130, 1976.

    Google Scholar 

  119. Schliwa M, van Blerkom J: Structural interactions of cytoskeletal components. J Cell Biol 90:222–235, 1981.

    Article  CAS  PubMed  Google Scholar 

  120. Cervera M, Dreyfuss G, Penman S: Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell 23:113–120, 1981.

    Google Scholar 

  121. Van Venrooij WJ, Sillekens PTG, Van Eekelen CAG, Reinders RJ: On the association of mRNA with the cytoskeleton in uninfected and adenovirus infected human KB cells. Expt Cell Res 135:79–91, 1981.

    Google Scholar 

  122. Howe JG, Hershey JWB: Translational initiation factor and ribosome association with the cytoskeletal framework fraction from HeLa cells. Cell 37:85–93, 1984.

    Google Scholar 

  123. Larson DE, Bagchi T, Sells BH: Cytoskeletal localization of mRNPs during muscle differentiation. Cell Biol 101:208a, 1985.

    Google Scholar 

  124. Bonneau AM, Darveau A, Sonenberg N: Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J Cell Biol 100:1209–1218, 1985.

    Google Scholar 

  125. Buckingham ME, Cohen A, Gros F: Cytoplasmic distribution of pulse-labelled poly(A) -containing RNA, particularly 268 RNA, during myoblast growth and differentiation. J Mol Biol 103:611–626, 1976.

    Google Scholar 

  126. Pierandrei-Amaldi P, Beccari E, Bozzoni I, Amaldi F: Ribosomal protein production in normal and anucleolate Xenopus embryos: regulation at the post-transcriptional and translational levels. Cell 42:317–323, 1985.

    Google Scholar 

  127. Danielsen EM, Cowell GM, Sjostrom H, Noren O: Translational control of an intestinal enzyme. Biochem J 235:447–451, 1986.

    Google Scholar 

  128. Geyer PK, Meyuhas O, Perry RP, Johnson LF: Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol 2:685–693, 1982.

    Google Scholar 

  129. Farmer SR, Ben-Zeév A, Benecke BJ, Penman S: Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: reversal upon cell attachment to a surface. Cell 15:627–637, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, D.E., Sells, B.H. The function of proteins that interact with mRNA. Mol Cell Biochem 74, 5–15 (1987). https://doi.org/10.1007/BF00221907

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221907

Keywords

Navigation