Skip to main content
Log in

Observations of the barotropic Ekman layer over an urban terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Data from low-level soundings over Cambridge, U.S.A. were selected on the basis of an Ekman-like variation of the wind vector with altitude combined with evidence of a barotropic atmosphere. The method of geostrophic departure was used to determine the shear-stress distribution. The analysis yields the dimensionless properties of the barotropic Ekman layer under neutral and stable stratification. Some important results include: the geostrophic drag coefficient displays no dependence on the degree of static stability; the dimensionless height of the boundary layer decreases with increasing stability in agreement with the prediction of Zilitinkevich; the properties of the urban surface layer, where the roughness elements are multistory buildings, show no dependence on atmospheric stability under the moderate wind conditions which display the Ekman-like wind profile; and the directions of the horizontal shear stress and the vertical derivative of the velocity vector usually tend to be parallel only near the surface layer. Values of the two constants of the Rossby number similarity theory are found for the neutral barotropic Ekman layer at a surface Rossby number equal to 2 × 105. The implications of the work with respect to wind-tunnel simulation of the flow over models of urban areas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A., and Luxton, R. E.: 1971, The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness, Part 1. Smooth to Rough, J. Fluid Mech. 48, 721–761.

    Google Scholar 

  • Blackadar, A. K.: 1962, The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers, J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, Flux-Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Clarke, R. H. and Hess, G. D.: 1974, Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Counihan, J.: 1971, Wind Tunnel Determination of the Roughness Length as a Function of the Fetch and the Roughness Density of Three-Dimensional Roughness Elements, Atmos. Environ. 5, 637–642.

    Google Scholar 

  • Csanady, G. T.: 1967, On the Resistance Law of a Turbulent Ekman Layer, J. Atmos. Sci. 24, 467–471.

    Google Scholar 

  • Deacon, E. L.: 1973, Geostrophic Drag Coefficients, Boundary-Layer Meteorol. 5, 321–340.

    Google Scholar 

  • DeMarrais, G. A.: 1959, Wind-Speed Profile at Brookhaven National Laboratory, J. Meteorol. 16, 181–190.

    Google Scholar 

  • Fiedler, F.: 1972, The Effect of Baroclinicity on the Resistance Law in a Diabatic Ekman Layer, Beitr. Phys. Atmos. 45, 164–173.

    Google Scholar 

  • Gill, A. E.: 1968, Similarity Theory and Geostrophic Adjustment, Quart. J. Roy. Meteorol. Soc. 94, 586–588.

    Google Scholar 

  • Gill, A. E.: 1969, The Turbulent Ekman Layer, Dept. of Applied Mechanics and Theoretical Physics, University of Cambridge.

  • Hess, G. D.: 1974, Reply to Yordanov (1974), J. Atmos. Sci. 31, 1939.

    Google Scholar 

  • Houlton, J. R.: 1972, An Introduction to Dynamic Meteorology, Academic Press.

  • Kazanski, A. B. and Monin, A. S.: 1961, On the Dynamic Interaction Between the Atmosphere and the Earth's Surface, Izv. Akad. Nauk., S.S.S.R., Geophys. Ser. No. 5, 786–788.

  • Kirschner, B. H.: 1971, ‘Environmental Meteorological Support Unit: A New Weather Bureau Program Supporting Urban Air Quality Control’, Proceedings of the Second International Clean Air Congress, (H. M. England and W. T. Beery, Eds.) Academic Press.

  • Lettau, H. H.: 1950, A Re-examination of the ‘Leipzig Wind Profile’ Considering Some Relations Between Wind and Turbulence in the Frictional Layer, Tellus 2, 125–129.

    Google Scholar 

  • Lettau, H. H.: 1970, Physical and Meteorological Basis for Mathematical Models of Urban Diffusion Processes, Proceedings of Symposium on Multiple-Source Urban Diffusion Models, (A. C. Stern, ed.) U.S. Government Directory Office, Washington, D.C.

    Google Scholar 

  • Mildner, P.: 1932, über die Reibung in einer speziellen Luftmasse in den untersten Schichten der Atmosphäre, Beitr. Phys. Atmosph. 19, 151–158.

    Google Scholar 

  • Sadeh, W. Z., Cermak, J. E., and Kawatani, T.: 1971, Flow Over High Roughness Elements, Boundary-Layer Meteorol. 1, 321–344.

    Google Scholar 

  • Seinfeld, J. H.: 1975, Air Pollution: Physical and Chemical Fundamentals, McGraw-Hill.

  • Tennekes, H.: 1973, The Logarithmic Wind Profile, J. Atmos. Sci. 30, 234–238.

    Google Scholar 

  • Yordanov, D.: 1974, Comments on ‘Rossby-Number Similarity Theory for a Baroclinic Planetary Boundary Layer, J. Atmos. Sci. 31, 1938.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, On the Determination of the Height of the Ekman Boundary Layer, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbins, R.A. Observations of the barotropic Ekman layer over an urban terrain. Boundary-Layer Meteorol 11, 39–54 (1977). https://doi.org/10.1007/BF00221823

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221823

Keywords

Navigation