Cell and Tissue Research

, Volume 159, Issue 3, pp 351–367 | Cite as

Ultrastructure of pea aphid mycetocytes: Evidence for symbiote secretion

  • Gareth W. Griffiths
  • Stanley D. Beck


A detailed investigation into the ultrastructure of the pea aphid mycetocytes and their contained symbiotes and organelles was carried out with the transmission electron microscope. The most striking observation was the presence of small vesicles in the space between the primary symbiote cell wall and membrane envelope (outer membrane space). The vesicles appear to form by a budding process at the outer cell wall layer. Subsequently, the vesicles, we suggest, may move out into the mycetocyte cytoplasm via a similar budding of the membrane envelope. The Golgi apparatus was found to be an important structural component of the primary mycetocyte; it is continuous with the rough endoplasmic reticulum and the latter, in turn, appears to be closely connected to the primary symbiote membrane envelope. This may be of functional significance. A number of other organelles not previously described in mycetocytes were found, including transparent vacuoles, granular bodies, multivesicular bodies and microfilaments. The chemical composition of the various vesicles and organelles is unknown at present.

Key words

Symbiotes Aphids Vesicles Organelles Electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akey, D. H.: Nutrition and culture of the pea aphid, Acyrthosiphon pisum, on defined diets. Ph. D. Thesis, University of Wisconsin (1972)Google Scholar
  2. Akey, D. H., Beck, S. D.: Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Ann. entomol. Soc. Amer. 64, 353–356 (1971)Google Scholar
  3. Buchner, P.: Endosymbioses of animals with plant microorganisms. New York: Interscience 1965Google Scholar
  4. Burge, R. E., Draper, J. C.: The structure of the cell wall of the gram-negative bacterium Proteus vulgaris. III. A lipopolysaccharide “unit membrane.” J. molec. Biol. 28, 205–210 (1967)Google Scholar
  5. Costerton, J. W., Ingram, J. M., Cheng, K. J.: Structure and function of the cell envelope of gram-negative bacteria. Bact. Rev. 38, 87–110 (1974)Google Scholar
  6. Dadd, R. H., Krieger, D. L.: Continuous rearing of aphids of the Aphis fabae complex on sterile synthetic diets. J. econ. Ent. 60, 1512–1514 (1967)Google Scholar
  7. Erhardt, P.: Die Wirkung verschiedener Spurenelemente auf Wachstum, Reproduktion und Symbionten von Neomyzus circumflexus Buckt (Aphididae, Homoptera, Insecta), bei künstlicher Ernährung. Z. vergl. Physiol. 58, 47–75 (1968)Google Scholar
  8. Erhardt, P.: Die Rolle von Methionin, Cystein, Cystin und Sulfat bei der künstlichen Ernährung von Neomyzus (Aulacortum) circumflexus Buckt (Aphididae, Homoptera, Insecta). Biol. Zbl. 88, 335–348 (1969)Google Scholar
  9. Griffiths, G. W., Beck, S. D.: Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect. Physiol. 19, 75–84 (1973)Google Scholar
  10. Griffiths, G. W., Beck, S. D.: Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell. Tiss. Res. 148, 287–300 (1974)Google Scholar
  11. Hinde, R.: Structural and physiological studies of the mycetome symbiotes of aphids. Ph. D. Thesis, University of Sydney (1970)Google Scholar
  12. Jamieson, J. E., Palade, G. E.: Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol. 34, 577–596 (1967)Google Scholar
  13. Locke, M. J., McMahon, J. T.: The origin and fate of microbodies in the fat body of an insect. J. Cell Biol. 48, 61–78 (1971)Google Scholar
  14. McLean, D. L., Houk, E. J.: Phase contrast and electron microscopy of the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect. Physiol. 19, 625–635 (1973)Google Scholar
  15. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952)Google Scholar
  16. Perdue, J. F.: The distribution, ultrastructure and chemistry of microfilaments in cultured chick embryo fibroblasts. J. Cell Biol. 58, 265–283 (1973)Google Scholar
  17. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  18. Rothfield, L., Pearlman-Kolthencz, M.: Synthesis and assembly of bacterial membrane components. A lipopolysaccharide-Phospholipid-Protein complex excreted by living bacteria. J. molec. Biol. 44, 477–492 (1969)Google Scholar
  19. Thompson, M. J., Svoboda, J. A., Kaplanig, J. N., Robbins, W. E.: Metabolic pathways of steroids in insects. Proc. roy. Soc. B 180, 203–221 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Gareth W. Griffiths
    • 1
  • Stanley D. Beck
    • 1
  1. 1.Department of EntomologyUniversity of Wisconsin MadisonWisconsinUSA

Personalised recommendations