Skip to main content
Log in

Growth characteristics of postnatal rat adrenal medulla in culture

A study correlating phase contrast, microcinematographic, histochemical, and electron microscopical observations

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Explants and enzyme-dispersed cells of adrenal medulla from 10–12 day old rats were studied in culture for up to 3 weeks. Adrenomedullary chromaffin cells, nerve cells and satellite cells were clearly discernible.

The nerve cells were few in number and did not show catecholaminespecific fluorescence.

Chromaffin cells stored catecholamines, as judged by the Falck and Hillarp method, in varying amounts decreasing with age of the cultures and the distance from the explants. Exocytosis profiles observed with the electron microscope suggested that cultured chromaffin cells also released catecholamines. Moreover, the cells formed processes and frequently migrated into the outgrowth. After 6 days in culture, the great majority of chromaffin cells stored noradrenaline as revealed by electron microscopy with few adrenaline-storing cells being visible. Granular vesicles (∼ 80–240 nm in diameter) with cores of different electron densities were occasionally present in the same cell suggesting the occurrence of mixtures of primary and secondary amines. Apart from “chromaffin” granules, small clear and densecored vesicles (∼ 40–60 nm) were found both in the somata and cell processes. Chromaffin cells and their processes were often closely apposed and occasionally formed specialized attachment zones. As a whole, chromaffin cells in culture resembled small granule-containing cells in sympathetic ganglia.

0.5 mM dbcAMP prevented dedifferentiation of chromaffin cells as judged by the lack of processes, the size and amount of “chromaffin” granules and the high number of adrenaline-storing cells present after 6 days in culture.

NGF caused a striking increase in the number of axons growing out from expiants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA:

catecholamines

NA:

noradrenaline

A:

adrenaline

DA:

dopamine

6-OHDA:

6-hydroxydopamine

5-OHDA:

5-hydroxydopamine

NGF:

nerve growth factor

PNMT:

phenylethanolamine N-methyltransferase

TH:

tyrosine hydroxylase

DBH:

dopamine β-hydroxylase

Ach:

acetylcholine

References

  • Angeletti, P.U., Levi-Montalcini, R.: Sympathetic nerve cell destruction in newborn mammals by 6-hydroxydopamine. Proc. nat. Acad. Sci. (Wash.) 65, 114–121 (1970)

    Google Scholar 

  • Angeletti, P.U., Levi-Montalcini, R., Kettler, R., Thoenen, H.: Comparative studies on the effect of the nerve growth factor on sympathetic ganglia and adrenal medulla in newborn rats. Brain Res. 44, 197–206 (1972)

    Google Scholar 

  • Armato, U., Nussdorfer, G.G., Mazzocchi, G., Andreis, P.G., Draghi, E.: Cyclic AMP induces ultrastructural differentiation in normal adult human adrenocortical cells cultured in vitro. Amer. J. Anat. 142, 533–539 (1975)

    Google Scholar 

  • Aw, E.J., Holt, P.G., Simons, P.J.: Myogenesis in vitro. Enhancement by dibutyryl cAMP. Exp. Cell Res. 83, 436–439 (1974)

    Google Scholar 

  • Björklund, A., Cegrell, C., Falck, B., Ritzen, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta physiol. scand. 78, 334–338 (1970)

    Google Scholar 

  • Bunge, M.B.: Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J. Cell Biol. 56, 713–735 (1973)

    Google Scholar 

  • Chamley, J.H., Campbell, G.R.: Trophic influences of sympathetic nerves and cyclic AMP on differentiation and proliferation of isolated smooth muscle cells in culture. Cell Tiss. Res. 161, 497–510 (1975)

    Google Scholar 

  • Chamley, J.H., Mark, G.E., Burnstock, G.: Sympathetic ganglia in culture, II. Accessory cells. Z. Zellforsch. 135, 315–327 (1972b)

    Google Scholar 

  • Chamley, J.H., Mark, G.E., Campbell, G., Burnstock, G.: Sympathetic ganglia in culture. I. Neurons. Z. Zellforsch. 135, 287–314 (1972a)

    Google Scholar 

  • Coupland, R.E.: The effects of insulin, reserpine and choline 2∶6-xylylether bromide on the adrenal medulla and on medullary autografts in the rat. J. Endocr. 17, 191–196 (1958)

    Google Scholar 

  • Coupland, R.E.: Electron microscopic observation on the structure of the rat adrenal medulla. J. Anat. (Lond.) 99, 231–272 (1965)

    Google Scholar 

  • Coupland, R.E., Hopwood, D.: The mechanism of the differential staining reaction for adrenaline and noradrenaline-storing granules in tissues fixed in glutaraldehyde. J. Anat. (Lond.) 100, 227–243 (1966)

    Google Scholar 

  • Coupland, R.E., MacDougall, J.D.B.: Adrenaline formation in noradrenaline-storing chromaffin cells in vitro induced by corticosterone. J. Endocr. 36, 317–324 (1966)

    Google Scholar 

  • Coupland, R.E., Weakley, B.S.: Developing chromaffin tissue in the rabbit: an electron microscopic study. J. Anat. (Lond.) 102, 425–455 (1968)

    Google Scholar 

  • Coupland, R.E., Weakley, B.S.: Electron microscopic observations on the adrenal medulla and extra-adrenal chromaffin tissue of the postnatal rabbit. J. Anat. (Lond.) 106, 213–231 (1970)

    Google Scholar 

  • Dale, H.H.: Conditions which are conductive to the production of shock by histamine. Brit. J. exp. Path. 1, 103–114 (1920)

    Google Scholar 

  • Diner, O.: Observations sur le développement de la médullo-surrénale du rat: l'évolution de la partie non chromaffine. Arch. d'Anat. micr. 54, 671–718 (1965)

    Google Scholar 

  • Douglas, W.W., Kanno, T., Sampson, S.R.: Effects of acetylcholine and other medullary secretagogues and antagonists on membrane potential of adrenal chromaffin cells: an analysis employing techniques of tissue culture. J. Physiol. (Lond.) 188, 107–120 (1967)

    Google Scholar 

  • Douglas, W.W., Poisner, A.M.: Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature (Lond.) 208, 1102–1103 (1965)

    Google Scholar 

  • Douglas, W.W., Rubin, R.P.: The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. (Lond.) 159, 40–57 (1961)

    Google Scholar 

  • Douglas, W.W., Rubin, R.P.: The mode of action of acetylcholine on the adrenal medulla. Biochem. Pharmacol. 8, 20 (1961)

    Google Scholar 

  • Eccles, R.M.: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.) 130, 572–584 (1955)

    Google Scholar 

  • Elfvin, L.G., Hökfelt, T., Goldstein, M.: Fluorescence microscopical, immunohistochemical and ultrastructural studies on sympathetic ganglia of the guinea-pig, with special reference to the SIF-cells and their catecholamine content. J. Ultrastruct. Res. 51, 377–396 (1975)

    Google Scholar 

  • Eränkö, Ö.: Adrenaline and noradrenaline in adrenal autografts. Nature (Lond.) 178, 603 (1956)

    Google Scholar 

  • Eränkö, O., Eränkö, L.: Small, intensely fluorescent granule-containig cells in the sympathetic ganglion of the rat. Progr. Brain Res. 34, 39–51 (1971)

    Google Scholar 

  • Eränkö, O., Härkönen, M.: Monoamine-containing small cells in the superior cervical ganglion of the rat and an organ composed of them. Acta physiol. scand. 63, 511–512 (1965)

    Google Scholar 

  • Euler, U.S. von: Synthesis, uptake and storage of catecholamines in adrenergic nerves. The effect of drugs. In: Catecholamines. Handbook of Experimental pharmacology, Vol. 33, pp. 186–230. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Feldberg, W., Lewis, G.P.: The action of peptides on the adrenal medulla. Release of adrenaline by bradykinin and angiotensin. J. Physiol. (Lond.) 171, 98–108 (1964)

    Google Scholar 

  • Feldberg, W., Minz, B., Tsudzimura, H.: Mechanisms of nervous discharge of adrenaline. J. Physiol. (Lond.) 81, 286–314 (1934)

    Google Scholar 

  • Furmanski, P., Siverman, D.J., Lubin, M.: Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate. Nature (Lond.) 233, 415 (1971)

    Google Scholar 

  • Furness, J.B., Costa, M.: The use of glyoxylic acid for the fluorescence histochemical demonstration of peripheral stores of noradrenaline and 5-hydroxytryptamine in whole mounts. Histochemistry 41, 335–352 (1975)

    Google Scholar 

  • Furness, J.B., Sobels, G.: The ultrastructure of paraganglia associated with the inferior mesenteric ganglia in the guinea-pig. Cell Tiss. Res. 171, 123–139 (1976)

    Google Scholar 

  • Goodman, R., Oesch, F., Thoenen, H.: Changes in enzyme patterns produced by high potassium concentration and dibutyryl cyclic AMP in organ cultures of sympathetic ganglia. J. Neurochem. 23, 369–378 (1974)

    Google Scholar 

  • Goodman, R., Otten, U., Thoenen, H.: Organ culture of the rat adrenal medulla: a model system for the study of trans-synaptic enzyme induction. J. Neurochem. 25, 423–427 (1975)

    Google Scholar 

  • Grillo, M.A.: Electron microscopy of sympathetic tissues. Pharmacol. Rev. 18, 387–399 (1966)

    Google Scholar 

  • Häusler, G., Thoenen, H., Häfeli, W., Huerlimann, A.: Electrical events in cardiac adrenergic nerves and noradrenaline release from the heart induced by acetylcholine and KCl. NaunynSchmiedebergs Arch. Pharmak. exp. Path. 261, 389–411 (1968)

    Google Scholar 

  • Hervonen, A., Hervonen, H., Rechardt, L.: Axonal growth from the primitive sympathetic elements of human fetal adrenal medulla. Experientia (Basel) 28, 178–179 (1972)

    Google Scholar 

  • Hill, C.E., Hoult, M., Burnstock, G.: Extra-adrenal chromaffin cells grown in tissue culture. Cell Tiss. Res. 161, 103–117 (1975)

    Google Scholar 

  • Iversen, L.L., Glowinski, J., Axelrod, J.: The physiologic disposition and metabolism of norepinephrine in immunosympathectomized animals. J. Pharmac. exp. Ther. 151, 273–284 (1966)

    Google Scholar 

  • Levi-Montalcini, R., Angeletti, P.U.: Noradrenaline and monoaminoxidase content in immunosympathetomized animals. Int. J. Neuropharmacol. 1, 161–164 (1962)

    Google Scholar 

  • Levi-Montalcini, R., Booker, B.: Destruction of sympathetic ganglia in mammals by antiserum to a nerve-growth protein. Proc. nat. Acad. Sci. (Wash.) 42, 384–391 (1960)

    Google Scholar 

  • Libet, B., Owman, Ch.: Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurons and in slow inhibitory postsynpatic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J. Physiol. (Lond.) 237, 635–662 (1974)

    Google Scholar 

  • Mains, R.E., Patterson, P.H.: Primary cultures of dissociated sympathetic neurons. J. Cell Biol. 59, 329–366 (1973)

    Google Scholar 

  • Manuelidis, L.: Adrenal gland in tissue culture. Nature (Lond.) 227, 519–521 (1970)

    Google Scholar 

  • Manuelidis, L.: Selective uptake of 3H tyramine by chromaffin cells in vitro and simultaneous release of noradrenaline. J. Neurocytol. 2, 117–131 (1973)

    Google Scholar 

  • Manuelidis, L.: The effect of dbc AMP adrenal chromaffin cells in organotypic culture. J. Neurocytol. 5, 1–10 (1976)

    Google Scholar 

  • Manuelidis, L., Manuelidis, E.E.: Synaptic boutons and neuron-like cells in isolated adrenal gland cultures. Brain Res. 96, 181–186 (1975)

    Google Scholar 

  • Matthews, M.R., Raisman, G.: The ultrastructure and somatic efferent synapses of small granulecontaining cells in the superior cervical ganglion. J. Anat. (Lond.) 105, 255–282 (1969)

    Google Scholar 

  • Murray, M.R.: Nervous tissues in vitro. In: Cells and tissues in culture. Methods, biology and physiology, ed. Willmer, E.N., Vol. 2, pp. 373–455. London-New York: Academic Press 1965

    Google Scholar 

  • Norberg, K.-Å., Hamberger, B.: The sympathetic adrenergic neuron. Acta physiol. scand. 63, Suppl. 238, 1–42 (1964)

    Google Scholar 

  • O'Lague, P.H., MacLeish, P.R., Nurse, C.A., Claude, P., Furshpan, E.J., Potter, D.D.: Physiological and morphological studies on developing sympathetic neurons in dissociated cell culture. Cold Spr. Harb. Symp. quant. Biol. 40, 399–407 (1975)

    Google Scholar 

  • Olson, L., Malmfors, T.: Growth characteristics of adrenergic nerves in the adult rat. Acta physiol. scand., Suppl. 348 (1970)

  • Otten, U., Thoenen, H.: Lack of correlation between changes in cyclic nucleotides and subsequent induction of tryosine hydroxylase in rat adrenal. Naunyn-Schmiedeberg's Arch. Pharmacol. 293, 105–108 (1976)

    Google Scholar 

  • Patterson, P.H., Reichardt, L.F., Chun, L.L.Y.: Biochemical studies on the development of primary sympathetic neurons in cell culture. Cold Spr. Harb. Symp. quant. Biol. 40, 389–397 (1975)

    Google Scholar 

  • Piezzi, R.S., Cavicchia, J.C.: Expiants of rat adrenal medulla. A light and electron microscopic study. Anat. Rec. 175, 77–85 (1973)

    Google Scholar 

  • Rees, R.P., Bunge, M.B., Bunge, R.P.: Morphological changes in the neuritic growth cone and target neuron during synaptic junction development. J. Cell Biol. 68, 240–263 (1976)

    Google Scholar 

  • Reid, G., Rand, M.: Physiological actions of the partially purified serum vasoconstrictor (serotonin). Aust. J. exp. Biol. 29, 401–415 (1951)

    Google Scholar 

  • Satake, Y.: Secretion of adrenaline and sympathin. Tokyo: Nangando 1955. Quoted after Douglas. In: Hdb. of Physiology, Sect. 7, Endocrinology, Vol. VI, Adrenal gland, pp. 367–388. American Physiol. Soc. Washington, D.C. 1975

    Google Scholar 

  • Siegrist, G., Dolivo, M., Dunant, Y., Foroglou-Karamens, C., de Ribeaupierre, F., Rouiller, C.: Ultrastructure and function of the chromaffin cells in the superior cervical ganglion of the rat. J. Ultrastruct. Res. 25, 381–407 (1968)

    Google Scholar 

  • Silberstern, S.D., Lemberger, L., Klein, D.C., Axelrod, J., Kopin, I.J.: Induction of adrenal tyrosine hydroxylase in organ culture. Neuropharmacol. 11, 721–726 (1972)

    Google Scholar 

  • Shapiro, D.L.: Morphological and biochemical alterations in foetal rat brain cells cultured in the presence of monobutyryl cyclic AMP. Nature (Lond.) 241, 203–204 (1973)

    Google Scholar 

  • Stjärne, C.: The synthesis, uptake and storage of catecholamines on the adrenal medulla. The effect of drugs. In: Catecholamines. Handbook of experimental pharmacology, Vol. 33, pp. 231–269. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Thoenen, H.: Trans-synaptic regulation of neuronal enzyme synthesis. In: Handbook of psychopharmacology, Vol. 3, pp. 443–475. New York-London: Plenum Publ. Corp. 1975

    Google Scholar 

  • Thoenen, H., Tranzer, J.P.: Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 271–288 (1968)

    Google Scholar 

  • Unsicker, K.: Über die Ganglienzellen im Nebennierenmark des Goldhamsters (Mesocricetus auratus). Z. Zellforsch. 76, 187–219 (1967)

    Google Scholar 

  • Unsicker, K.: Chromaffin, small granule-containing and ganglion cells in the adrenal gland of reptiles. Cell Tiss. Res. 165, 411–508 (1976)

    Google Scholar 

  • Unsicker, K., Chamley, J.H.: Effects of dbcAMP and theophylline on rat adrenal medulla grown in tissue culture. Histochemistry 46, 197–201 (1976)

    Google Scholar 

  • Unsicker, K., Habura, O., Zwarg, U., Lindmar, R., Löffelholz, K., Wolff, U.: Cell types in the adrenal medulla of newborn and adult guinea-pigs. A morphological, histochemical and biochemical study. In preparation (1976a)

  • Unsicker, K., Zwarg, U., Habura, O.: Electron microscopic evidence for the formation of synapses and synaptoid contacts in adrenal medullary grafts. Brain Res., in press (1976b)

  • Vogt, M.: The secretion of the denervated adrenal medulla of the cat. Brit. J. Pharmacol. 7, 325–330 (1952)

    Google Scholar 

  • Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34 (1969)

    Google Scholar 

  • Wurtman, R.J., Axelrod, J.: Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J. biol. Chem. 241, 2301–2305 (1966)

    Google Scholar 

  • Yamauchi, A., Fujimaki, Y., Yokota, R.: Reciprocal synapses between cholinergic postganglionic axon and adrenergic interneuron in the cardiac ganglion of the turtle. J. Ultrastruct. Res. 50, 41–51 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this study was carried out in the Department of Zoology, University of Melbourne, Australia. We wish to thank Professor G. Burnstock for providing us with laboratory facilities

Supported by grants from Deutsche Forschungsgemeinschaft, a Research Fellowship of the University of Melbourne (K.U.), and a grant from the Life Insurance Medical Research Fund of Australia and New Zealand (J.H.C.). Thanks are due to Janet McConnell, Marlis Rall and Ingrid Rietiens for excellent technical assistance, Heidi Waluk for the photographic work and Brigitte Schierhorn for typing the manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsicker, K., Chamley, J.H. Growth characteristics of postnatal rat adrenal medulla in culture. Cell Tissue Res. 177, 247–268 (1977). https://doi.org/10.1007/BF00221086

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221086

Key words

Navigation