Cell and Tissue Research

, Volume 192, Issue 2, pp 309–317 | Cite as

Contractile vacuoles in cells of a fresh water sponge, Spongilla lacustris

  • Elizabeth B. Brauer
  • James A. McKanna


Forty or more independently functioning contractile vacuoles (CVs) occupy the central region of fresh water sponge pinacocytes. Each CV undergoes a cycle of enlargement by fusion, movement, shape change, rounding up, and emptying over the course of 5–30 min. Diameter at discharge varies between 1 and 13 μm. CVs in all cell types are associated with submicroscopic coated vesicles. Filled CVs are bounded by an unmodified trilaminar membrane, but vacuoles with excess membrane frequently show coated evaginations. These evaginations are thought to pinch off as coated vesicles, providing an avenue for membrane recycling in the CV system.

Key words

Contractile vacuole Water balance Invertebrate Membranes Osmoregulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brauer, E.B.: Osmoregulation in the fresh water sponge, Spongilla lacustris. J. exp. Zool. 192, 181–192 (1975)Google Scholar
  2. Brønsted, H.V.: Entwicklungsphysiologische Studien über Spongilla lacustris (L.). Acta Zool. (Stockholm) 17, 75–172 (1936)Google Scholar
  3. Feige, W.: Die Feinstruktur der Epithelien von Ephydatia fluviatilis. Zool. Jb. Anat. 86, 177–237 (1969)Google Scholar
  4. Gatenby, J.B., Dalton, A.J., Felix, M.D.: The contractile vacuole of Parazoa and Protozoa and the Golgi apparatus. Nature (Lond.) 176, 301–302 (1955)Google Scholar
  5. Gatenby, J.B., Tahmisian, T.M.: The contractile vacuoles and Golgi apparatus of Ephydatia fluviatilis: an electron microscope study. J. roy. micr. Soc. 77, 107–115 (1959)Google Scholar
  6. Jepps, M.W.: Contribution to the study of the sponges. Proc. roy. Soc. B 134, 408–417 (1947)Google Scholar
  7. Kitching, J.A.: Contractile vacuoles. Symp. Soc. exp. Biol. 6, 145–165 (1952)Google Scholar
  8. Leedale, G.F., Meeuse, B., Pringsheim, E.: Structure and physiology of Euglena spirogyra. Arch. Mikrobiol. 50, 68–102 (1965)Google Scholar
  9. Manton, I.: Observations on the fine structure of the zoospore and young germling of Stigeoclonium. J. exp. Bot. 15, 399–411 (1964)Google Scholar
  10. McKanna, J.A.: Contractile vacuoles in protozoans and sponges: Comparative studies of the fine structure and function in relation to the physical properties of membranes and water in biologic systems. Ph.D. Dissertation, The University of Wisconsin (1972)Google Scholar
  11. McKanna, J.A.: Membrane recycling: Vesiculation of the amoeba contractile vacuole at systole. Science 179, 88–90 (1973)Google Scholar
  12. McKanna, J.A.: Permeability modulating membrane coats. I. Fine structure of fluid segregation organelles of peritrich contractile vacuoles. J. Cell Biol. 63, 317–322 (1974)Google Scholar
  13. McKanna, J.A.: Fine structure of fluid segregation organelles of Paramecium contractile vacuoles. J. Ultrastruct. Res. 54, 1–10 (1976)Google Scholar
  14. Pickett-Heaps, J.D.: Reproduction by zoospores in Oedogonium. II. Emergence of the zoospore and the motile phase. Protoplasma 74, 149–167 (1972)Google Scholar
  15. Riddick, D.H.: Contractile vacuole in the amoeba, Pelomyxa carolinensis. Amer. J. Physiol. 215, 736–740 (1968)Google Scholar
  16. Rifkin, J.L.: The role of the contractile vacuole in the osmoregulation of Tetrahymena pyriformis. J. Protozool. 20, 108–114 (1973)Google Scholar
  17. Weissenfels, N.: Bau und Funktion des Süsswasserschwamms Ephydatia fluviatilis. Cytobiologie 8, 269–288 (1974)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Elizabeth B. Brauer
    • 1
  • James A. McKanna
    • 1
  1. 1.Departments of Zoology and AnatomyThe University of WisconsinMadisonUSA

Personalised recommendations