Skip to main content
Log in

Quantitative relations in the retinal ganglion cell layer of the rat: neurons, glia and capillaries before and after optic nerve section

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

• Background: To study normal quantitative cellular relations and the effect of optic nerve section on neurons, glia and capillaries, morphometry was carried out on 24 whole-mount retinae of 12 rats. • Methods: In the left eye the optic nerve had been sectioned 30 days before death; the right eyes served as controls. Using a cresyl violet stain, cells in the retinal ganglion cell layer were evaluated at three distances from the papilla (1.2, 2.4 and 3.6 mm). • Results: Gradients for density of neurons, glial cells and capillary grid were all within a small range (center: mid:periphery=1.41–1.59: 1.29–1.33: 1.00). For all these distances we found a fairly constant ratio among the three histological parameters: 44.7–46.6 neurons and 2.3–2.6 glial cells were counted per capillary grid square (geometric model for the capillary meshwork). Thirty days after section of the optic nerve the capillary meshwork remained unaffected (96.2 grid squares/mm2 before nerve section vs 94.7 grid squares/mm2 after nerve section) while glial cells had more than doubled (238 vs 498 cells/mm2) and nearly half of all neurons had gone (4371 vs 2244 cell s/mm2). Size characteristics of amacrine cells were similar for all three eccentricities, whereas peripheral retinal ganglion cells tended to be considerably larger than central ones. • Conclusions: Cresyl violet stain can be used to study quantitative changes of neurons, glial cells and capillary grid in the retinal ganglion layer of a single whole-mount retina. There is a remarkable degree of proportionality between the density of these cells over the whole normal retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allcutt C, Berry M, Sievers J (1984) A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Dev Brain Res 16: 219–230

    Google Scholar 

  2. Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R (1986) Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol 15: 345–362

    Google Scholar 

  3. Björklund A, Stenevi U (1985) Neural grafting in the mammalian CNS. Elsevier, Amsterdam

    Google Scholar 

  4. Büssow H (1980) The astrocytes in the optic nerve head and retina of mammals. A special glia for the ganglion cell axons. Cell Tissue Res 206: 367–378

    Google Scholar 

  5. Carpenter P, Sefton AJ, Dreher B, Lim W-L (1986) Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. J Comp Neurol 251: 240–259

    Google Scholar 

  6. Conradi N, Sjöstrand J (1993) A morphometric and stereologic analysis of ganglion cells of the central human retina. Graefe's Arch Clin Exp Ophthalmol 231: 169–174

    Google Scholar 

  7. Cowey A, Perry VH (1979) The projection of the temporal retina in rats, studied by retrograde transport of horseradish peroxidase. Exp Brain Res 35:457–464

    Google Scholar 

  8. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300: 5–25

    CAS  PubMed  Google Scholar 

  9. Dräger UC, Olsen JF (1981) Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci 20: 285–293

    Google Scholar 

  10. Fukuda Y (1977) A three-group classification of rat retinal ganglion cells: histological and physiological studies. Brain Res 119: 327–344

    Google Scholar 

  11. Gellrich N-C, Gellrich M-M, Machtens E (1993) Degeneration nach Sehnervschädigung. Dtsch Z Mund Kiefer Gesichtschir 17: 286–288

    Google Scholar 

  12. Gellrich N-C, Gellrich M-M, Bremerich A (1994) Influence of fetal brain grafts on axotomized retinal ganglion cells. Int J Oral Maxillofac Surg 23: 403–405

    Google Scholar 

  13. Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34: 395–400

    CAS  PubMed  Google Scholar 

  14. Goshgarian HG, Koistinen JM, Schmidt ER (1983) Cell death and changes in the retrograde transport of horseradish peroxidase in rubrospinal neurons following spinal cord hemisection in the adult rat. J Comp Neurol 214: 251–257

    Google Scholar 

  15. Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55: 483–493

    Google Scholar 

  16. Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163: 107–128

    Google Scholar 

  17. Hughes A, Vaney DI (1980) Coronate cells: displaced amacrines of the rabbit retina? J Comp Neurol 189: 169–189

    Google Scholar 

  18. Hughes WF (1991) Quantitation of ischemic damage in the rat retina. Exp Eye Res 53: 573–582

    Google Scholar 

  19. Humphrey MF, Beazley LD (1985) Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei. J Comp Neurol 236: 382–402

    Google Scholar 

  20. James GR (1933) Degeneration of ganglion cell following axonal inury. Arch Ophthalmol 9: 338–343

    Google Scholar 

  21. Kelly JP, Gilbert CD (975) The projections of different morphological types of ganglion cells in the cat retina. J Comp Neurol 163: 65–80

    Google Scholar 

  22. Lierse W (1963) Die Kapillardichte im Wirbeltiergehirn. Acta Anat 54: 1–31

    Google Scholar 

  23. McCall MJ, Robinson SR, Dreher B (1987) Differential retinal growth appears to be the primary factor producing the ganglion cell density gradient in the rat. Neurosci Lett 79: 78–84

    Google Scholar 

  24. Mednick AS, Springer AD (1981) Asymmetric distribution of retinal ganglion cells in goldfish. J Comp Neurol 202:493–504

    Google Scholar 

  25. Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602: 304–317

    Google Scholar 

  26. Misantone LJ, Gershenbaum M, Murray M (1984) Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol 13: 449–465

    Google Scholar 

  27. Moriya T, Yamadori T (1993) Correlative study of the morphology and central connections of ipsilaterally projecting retinal ganglion cells in the albino rat. Exp Eye Res 56: 79–83

    Google Scholar 

  28. Neumaier S, Gellrich M-M, Hansen LL (1994) The retinal ganglion cell layer in an eye with drusen in the optic nerve head. Poster, 10th Meeting of International Neuro-Ophthalmological Society, Freiburg. Abstract book

  29. Oppel O (1967) Untersuchungen über die Verteilung und Zahl der retinalen Ganglienzellen beim Menschen. Graefe's Arch Clin Exp Ophthalmol 172: 1–22

    Google Scholar 

  30. Ogden TE (1978) Nerve fibre layer astrocytes of primate retina: morphology, distribution and density. Invest Ophthalmol Vis Sci 17: 499–510

    Google Scholar 

  31. Perry VH (1981) Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. Neuroscience 6: 931–944

    Google Scholar 

  32. Perry VH, Henderson Z, Linden R (1983) Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol 219: 356–368

    Google Scholar 

  33. Potts RA, Dreher B, Bennett MR (1982) The loss of ganglion cells in the developing retina of the rat. Dev Brain Res 3: 481–486

    Google Scholar 

  34. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107: 453–464

    Google Scholar 

  35. Rapaport DH, Stone J (1983) Time course of morphological differentiation of cat retinal ganglion cells: influence on soma size. J Comp Neurol 221: 42–52

    Google Scholar 

  36. Sandell JH (1985) NADPH-diaphorase cells in the mammalian inner retina. J Comp Neurol 238: 466–472

    Google Scholar 

  37. Sievers H, Gronemeyer U, Hansen C, Sievers J (1984) Der Fasciculus opticus als Modell für die Untersuchung von Regenerationsvorgängen im Zentralnervensystem. Fortschr Ophthalmol 81: 164–167

    Google Scholar 

  38. Sievers J, Hausmann B, Unsicker K, Berry M (1987) Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett 76: 157–162

    Google Scholar 

  39. Silva-Araújo A, Salgado-Borges J, Cardoso V, Silva MC, Castro-Correia J, Tavares MA (1993). Changes in the retinal ganglion cell layer and optic nerve of rats exposed neonatally to cocaine. Exp Eye Res 56: 199–206

    Google Scholar 

  40. Sjöstrand J, Conradi N, Klarén L (1994) How many ganglion cells are there to a foveal cone? A stereologic analysis of the quantitative relationship between cone and ganglion cells in one normal human fovea. Graefe's Arch Clin Exp Ophthalmol 232: 432–437

    Google Scholar 

  41. Stone J (1965) A quantitative analysis of the distribution of ganglion cells in the cat's retina. J Comp Neurol 124: 337–352

    Google Scholar 

  42. Stone J (1981) The whole mount handbook — a guide to the preparation and analysis of retinal whole mounts. Maitland, Sydney

    Google Scholar 

  43. Stone J, Dreher Z (1987) Relationship between astrocytes, ganglion cells and vasculature of the retina. J Comp Neurol 255: 35–49

    Google Scholar 

  44. Thanos S, Bähr M, Barde Y-A, Vanselow J (1989) Survival and axonal elongation of adult rat retinal ganglion cells. Eur J Neurosci 1: 19–26

    Google Scholar 

  45. Thanos S, Rohrbach J-M, Thiel HJ (1991) Postmortem preservation of ganglion cells in the human retina. Retina 11: 318–327

    Google Scholar 

  46. Unoki K, LaVail MM (1994) Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 35: 907–915

    Google Scholar 

  47. Villegas-Perez MP, Vidal-Sanz M, Bray GM, Aguayo AJ (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J Neurosci 8:265–280

    Google Scholar 

  48. Wässle H, Illing R-B (1980) The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. J Comp Neurol 190: 333–356

    Google Scholar 

  49. Wässle H, Levick WR, Cleland BG (1975) The distribution of the alpha type of ganglion cells in the cat's retina. J Comp Neurol 159: 419–438

    Google Scholar 

  50. Wise GN, Dollery CT, Henkind P (1971) The retinal circulation. Harper and Row, New York

    Google Scholar 

  51. Zhang C, Takahashi K, Lam TT, Tso MOM (1994) Effects of basic fibroblast growth factor in retinal ischemia. Invest Ophthalmol Vis Sci 35: 3163–3168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellrich, MM., Gellrich, NC. Quantitative relations in the retinal ganglion cell layer of the rat: neurons, glia and capillaries before and after optic nerve section. Graefe's Arch Clin Exp Ophthalmol 234, 315–323 (1996). https://doi.org/10.1007/BF00220707

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220707

Keywords

Navigation