Skip to main content
Log in

Identification of an essential histidine residue at the active site of the tonoplast malate carrier in Catharanthus roseus cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The involvement of a histidyl residue in the binding or translocation step was investigated in the malate carrier at the tonoplast of Catharanthus roseus cells. The transport rate was strongly stimulated when the pH of the incubation medium was decreased from pH 7.0 to 5.0. The histidine-specific reagent diethylpyrocarbonate (DEPC) efficiently inhibited the activity of the malate carrier. Inhibition developed rapidly and was completed after 5 min at a concentration of 2 mM DEPC. The original substrate, malate, partially protected the carrier from inactivation by DEPC. Other organic acids (citrate, quinate) which are known to affect the malate transport of isolated vacuoles or tonoplast vesicles also showed protective properties. Inhibition of malate transport on tonoplast vesicles can also be achieved by photooxidation in the presence of the dye Rose Bengal. Malate also proved to protect against inactivation.

The results strongly support the notion that a histidyl residue(s) is involved either in the binding or translocation of malate and that the protonation of the histidyl residue is essential to provide a high rate of malate transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alibert, G., Carrasco A., Boudet, A.M. 1982. Changes in biochemical composition of vacuoles isolated from Acer pseudopiatanus L. during cell culture. Biochim. Biophys. Acta 721:22–29

    Google Scholar 

  • Bauer, P.I., Buki, K.G., Kun, E. 1990. Evidence for the participation of histidine residues located in the 56 kDa C-terminal polypeptide domain of ADP-ribosyl transferase in its catalytic activity. FEBS Lett. 273:6–10

    Google Scholar 

  • Bertran, J., Roca, A., Pola, E., Testar, X., Zorzano, A., Palacin, M. 1991. Modification of system A amino acid carrier by diethyl pyrocarbonate. J. Biol. Chem. 266:798–802

    Google Scholar 

  • Bouyssou, H., Canut, H., Marigo, G. 1990. A reversible carrier mediates the transport of malate at the tonoplast of Catharanthus roseus cells. FEBS Lett. 275:73–76

    Google Scholar 

  • Buser-Suter, C., Wiemken, A., Matile, P. 1982. A malic acid permease in isolated vacuoles of a Crassulacean acid metabolism plant. Plant Physiol. 69:456–459

    Google Scholar 

  • Canut, H., Baudracco, S., Cabane, M., Boudet, A.M., Marigo, G. 1991. Preparation of sealed tonoplast and plasma membrane vesicles from Catharanthus roseus L. G. Don. cells by free-flow electrophoresis. Planta 184:448–456

    Google Scholar 

  • Fahnestock, S.R. 1975. Evidence of the involvement of a 50S ribosomal protein in several active sites. Biochemistry 14:5321–5327

    Google Scholar 

  • Lundblad, R.L., Noyes, C.M. 1984. Chemical reagents for protein modification. CRC, Boca Raton. FL

    Google Scholar 

  • Lüttge, U., Smith, J.A.C. 1984. Mechanism of passive malic acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. J. Membrane Biol. 81:149–158

    Google Scholar 

  • Marigo, G., Bouyssou, H. 1989. Carrier-mediated uptake of malate in isolated vacuoles from Catharanthus roseus cells. In: Plant Membrane Transport: The Current Position. J. Dainty, M.I. De Michelis, E. Marrè, and F. Rasi-Caldogno, editors. pp. 155–160. Elsevier Science, Amsterdam

    Google Scholar 

  • Marigo, G., Bouyssou, H. 1990. Malate uptake into isolated vacuoles from Catharanthus roseus cells: Role of the membrane potential. Bot. Acta 103:399–403

    Google Scholar 

  • Marigo, G., Bouyssou, H., Boudet, A.M. 1986. Accumulation des ions nitrate et malate dans des cellules de Catharanthus roseus et incidence sur le pH vacuolaire. Physiol. Vég. 24:15–23

    Google Scholar 

  • Marigo, G., Bouyssou, H., Laborie, D. 1988. Evidence for a malate transport into vacuoles isolated from Catharanthus roseus cells. Bot. Acta 101:187–191

    Google Scholar 

  • Marigo, G., Delorme, Y.M., Lüttge, U., Boudet, A.M. 1983. Role de l'acide malique dans la régulation du pH vacuolaire dans des cellules de Catharanthus roseus cultivées “in vitro”. Physiol. Vég. 21:1135–1144

    Google Scholar 

  • Martinoia, E., Flügge, U.-L, Kaiser, G., Heber, U., Heldt, H.W. 1985. Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts. Biochim. Biophys. Acta 806:311–319

    Google Scholar 

  • Martinoia, E., Vogt, E., Amrhein, N. 1990. Transport of malate and chloride into barley mesophyll vacuoles: Different carriers are involved. FEBS Lett. 261:109–111

    Google Scholar 

  • Martinoia, E., Vogt, E., Rentsch, D., Amrhein, N. 1991. Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes. Biochim. Biophys. Acta 1062:271–278

    Google Scholar 

  • Miles, E.W. 1977. Modification of histidyl residues in proteins by diethylpyrocarbonate. In: Methods in Enzymology. C.H.W. Hirs, and S.N. Timasheff, editors. Vol. 47, pp.431–442. Academic, San Diego

    Google Scholar 

  • Nishida, K., Tominaga, O. 1987. Energy-dependent uptake of malate into vacuoles isolated from CAM-plant. Kalanchoe daigremontiana. J. Plant Physiol. 127:385–393

    Article  CAS  PubMed  Google Scholar 

  • Padan, E., Patel, L., Kaback, H.R. 1979. Effect of diethylpyrocarbonate on lactose/proton symport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 76:6221–6225

    Google Scholar 

  • Raven. J.A. 1985. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of energy, nitrogen and water. New Phytol. 101:25–77

    Google Scholar 

  • Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85

    Google Scholar 

  • White, P.J., Smith, J.A.C. 1989. Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants: Specificity of the malate-influx system in Kalanchoë daigremontiana. Planta 179:265–274

    Google Scholar 

  • Winter, K. 1985. Crassulacean acid metabolism. In: Topics in Photosynthesis. Vol 6, pp 329–387. J. Barber and N.R. Baker, editors. Elsevier Publishers B.V., Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the Centre National de la Recherche Scientifique and by a grant from the European Community (BRIDGE program). K.-J. Dietz acknowledges support by the Jubiläumsstiftung der Julius-Maximilians-Universität Würzburg, which made the stay in Toulouse possible, and the Sonderforschungsbereich 176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, KJ., Canut, H. & Marigo, G. Identification of an essential histidine residue at the active site of the tonoplast malate carrier in Catharanthus roseus cells. J. Membarin Biol. 129, 137–143 (1992). https://doi.org/10.1007/BF00219509

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219509

Key Words

Navigation