Skip to main content
Log in

Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Meiotic chromosome pairing and Giemsa C-banding analyses in crosses of several European blue-grained wheat strains with Chinese Spring double ditelosomic and other aneuploid lines showed that Triticum aestivum Blaukorn strains “Berlin,” “Probstdorf,” “Tschermak,” and “Weihenstephan” are chromosome substitutions, in which the complete wheat chromosome 4A pair is replaced, whereas the strains “Brünn” and “Moskau” are 4B substitutions. The alien chromosome pair in all of these strains is an A genome chromosome (4A) from diploid Triticum monococcum or T. boeoticum not present in common tetraploid and hexaploid cultivated wheats. The Blaukorn strain Weihenstephan “W 70a86” possesses, in addition to a rye chromosome pair 5R compensating for the loss of part of chromosome 5D, a 4A/5DL translocation replacing chromosome pair 4B of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alonso LC, Kimber G (1980) A hybrid between Agropyron junceum and Triticum aestivum. Cereal Res Commun 8:355–358

    Google Scholar 

  • Cermeño MC, Zeller FJ (1986) Identity and cytological characterization of alien chromosomes conferring blue aleurone color in common wheat. In: Li Z, Swaminathan MS (eds) Proc 1st Int Symp Chromosome Engin Plants, Beijing, pp 123–125

  • Cermeño MC, Zeller FJ (1988) Cytological investigation on the identity of the alien chromosome pair in several European blue-grained common wheat strains. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Cambridge, pp 227–230

  • Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of Triticum urartu. Genet Res 27:69–76

    Google Scholar 

  • Dvořák J (1983) The origin of wheat chromosomes 4A and 4B and their genome reallocation. Can J Genet Cytol 25:210–214

    Google Scholar 

  • Dvořák J, McGuire PE, Cassidy B (1988) Apparent sources of the A genomes of wheat inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Dvořák J, Resta P, Kota RS (1990) Molecular evidence on the origin of wheat chromosomes 4A and 4B. Genome 33:30–39

    Google Scholar 

  • Forster BP, Gorham J, Miller TE (1987) Salt tolerance of an amphiploid between Triticum aestivum and Agropyron junceum. Plant Breed 98:1–8

    Google Scholar 

  • Galili G, Felsenburg T, Levy AA, Altschuler Y, Feldman M (1988) Inactivity of high-molecular-weight glutenin genes in wild diploid and tetraploid wheats. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Cambridge, pp 81–86

  • Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc Natl Acad Sci USA 84:6800–6804

    Google Scholar 

  • Giraldez R, Cermeño MC, Orellana J (1979) Comparison of C-banding pattern in the chromosomes of inbred lines and open-pollinated varieties of rye, Secale cereale L. Z Pflanzenzuecht 83:40–48

    Google Scholar 

  • Jakubziner MM (1958) New wheat species. Proc 1st Int Wheat Genet Symp, Winnipeg, pp 207–217

  • Jan CC, Dvořák J, Qualset CO, Soliman KM (1981) Selection and identification of a spontaneous alien chromosome translocation in wheat. Genetics 98:389–398

    Google Scholar 

  • Joppa LR, Maan SS (1982) A durum wheat disomic-substitution line having a pair of chromosomes from Triticum boeoticum: effect on germination and growth. Can J Genet Cytol 24:549–557

    Google Scholar 

  • Kasarda DD (1980) Structure and properties of alpha-gliadins. Ann Technol Agric 29:151–173

    Google Scholar 

  • Kattermann G (1932a) Genetische Beobachtungen und zytologische Untersuchungen an der Nachkommenschaft einer Gattungskreuzung. 1. Genetische Beobachtungen. Z. Indukt Abstamm Vererbungslehre 40:152–206

    Google Scholar 

  • Kattermann G (1932b) Genetische Beobachtungen und zytologische Untersuchungen an der Nachkommenschaft einer Gattungskreuzung. 2. Zytologische Untersuchungen. Z Indukt Abstamm Vererbungslehre 40:395–466

    Google Scholar 

  • Kattermann G (1932c) Farbxenien bei Weizenkreuzungen und das erbliche Verhalten blaugefärbter Aleuronschicht bei der verwendeten neuartigen Weizenrasse im allgemeinen. Z Zuecht A Pflanzenzuecht 1:413–416

    Google Scholar 

  • Kattermann G (1938) Über konstante, halmbehaarte Stämme aus Weizenroggenbastardierung mit 2n = 42 Chromosomen. Z Indukt Abstamm Vererbungslehre 74:354–375

    Google Scholar 

  • Knott DR (1958) The inheritance in wheat of a blue endosperm color derived from Agropyron elongatum. Can J Bot 6:571–574

    Google Scholar 

  • Konarev VG, Gavrilyuk IP, Gubareva NK, Peneva TI (1979) Seed proteins in genome analysis, cultivar identification and documentation of cereal genetic resources: a review. Cereal Chem 56:272–278

    Google Scholar 

  • Kuspira J, MacLagan J, Bhambhani RN, Sadasivaiah RS, Kim N-S (1989) Genetic and cytogenetic analyses of the A genome of Triticum monococcum L. V. Inheritance and linkage relationships of genes determining the expression of 12 qualitative characters. Genome 32:869–881

    Google Scholar 

  • Lacadena JR, Cermeño MC, Orellana J, Santos JL (1984) Evidence for wheat-rye nucleolar competition (amphiplasty) in triticale by silver-staining procedure. Theor Appl Genet 67:207–213

    Google Scholar 

  • Larson RI, Atkinson TG (1970) Identity of the wheat chromosomes replaced by Agropyron chromosomes in a triple alien chromosome substitution line immune to wheat streak mosaic. Can J Genet Cytol 12:145–150

    Google Scholar 

  • Larson RI, Atkinson TG (1973) Wheat-Agropyron chromosome substitution lines as sources of resistance to wheat streak mosaic virus and its vector, Aceria tulipae. In: Sears ER, Sears LMS (eds) Proc 4th Int/Wheat Genet Symp, Columbia/MO, pp 173–177

  • Li Z, Mu S, Jiang L, Zhou H (1983) A cytogenetic study of blue-grained wheat. Z Pflanzenzücht 90:265–272

    Google Scholar 

  • Maystrenko OT (1976) Identification and localization of the genes controlling leaf pubescence in young plants of wheat. Genetika 12:5–15

    Google Scholar 

  • Mettin D, Blüthner WD, Schäfer HI, Buchholz U, Rudolph A (1977) Untersuchungen an Samenproteinen in der Gattung Aegilops. Tagungsber Akad Landwirtschaftswiss DDR 158:95–106

    Google Scholar 

  • Miller TE, Shepherd KW, Riley R (1981) The relationship of chromosome 4A of diploid wheat. Clarification of an earlier study. Cereal Res Commun 9:327–329

    Google Scholar 

  • Miller TE, Forster BP, Reader SM, King IP (1987) Chromosome 4A in hexaploid wheat. Annual Report, 1986, Plant Breeding Institute Cambridge, p 68

    Google Scholar 

  • Mu S, Li Z, Zhou H, Yu L (1986) Cytogenetic identification of blue-grained wheat. In: Li Z, Swaminathan MS (eds) Proc 1st Int Symp Chromosome Engin Plants, Beijing, pp 126–127

  • Naranjo T (1990) Chromosome structure of durum wheat. Theor Appl Genet 79:397–400

    Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1988) Chromosome structure of common wheat: genome reassignment of chromosomes 4A and 4B. In: Miller TE, Koebner RMD (eds) Proc 7th Wheat Genet Symp, Cambridge, pp 116–120

  • Škorpik M, Rod J, Šip V, Sehnalová J, Košner J (1983) Colored wheat from the effects of E. Tschermak. Acta Agron Acad Sci Hung 32:147–157

    Google Scholar 

  • Soliman KM, Bernardin JE, Qualset CO (1980) Effects of an Agropyron chromosome on endosperm proteins in common wheat (Triticum aestivum L.) Biochem Genet 18:465–482

    Google Scholar 

  • Suneson CA, Pope WK (1946) Progress with Triticum x Agropyron crosses in California. J Am Soc Agron 38:956–963

    Google Scholar 

  • Tschermak-Seysenegg E (1914) Die Verwertung der Bastardierung für phylogenetische Fragen in der Getreidegruppe. Z Pflanzenzucht 2:291–312

    Google Scholar 

  • Tschermak-Seysenegg E (1936) Wirkliche, abgeleitete, und fragliche Weizen-Roggen-Bastarde (Triticale Formen). Anz Akad Wiss Wien Math Naturwiss Kl 20:195–198

    Google Scholar 

  • Tschermak-Seysenegg E (1938) Beiträge zur züchterischen und zytologischen Beurteilung der Weizen-Roggenund Weizen-Quecken-Bastarde. Z Zuecht A Pflanzenzuecht 22:397–416

    Google Scholar 

  • Wazuddin M, Driscoll CJ (1986) Chromosome constitution of polyploid wheats: introduction of diploid wheat chromosome 4. Proc Natl Acad Sci USA 83:3870–3874

    Google Scholar 

  • Whelan EDP (1989) Transmission of an alien telocentric addition chromosome in common wheat that confers blue seed color. Genome 32:30–34

    Google Scholar 

  • Zeller FJ (1976) Identification of a wheat-Agropyron and a wheat-rye chromosome substitution. Wheat Inf Serv 41–42:48–52

    Google Scholar 

  • Zeller FJ, Baier AC (1973) Substitution des Weizenchromosomenpaares 4A durch das Roggenchromosomenpaar 5R in dem Weihenstephaner Weizenstamm W 70a86 (Blaukorn). Z Pflanzenzücht 70:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, F.J., Cermeño, M.C. & Miller, T.E. Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains. Theoret. Appl. Genetics 81, 551–558 (1991). https://doi.org/10.1007/BF00219448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219448

Key words

Navigation