Skip to main content
Log in

Ganglioside GD3: structure, cellular distribution, and possible function

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Insight on the function of gangliosides. can emerge from knowledge of their cellular distribution. In this paper we review the structure of ganglioside GD3 and recent information on its cellular distribution. GD3 appears to be enriched in a variety of neural cell types including: reactive glia, gliomas, undifferentiated neurons, Muller glia, and oligodendroglia. Because each of these cell types share an enhanced permeability to ions and metabolites or possess properties associated with enhanced permeability, we suggest that GD3 is associated with enhanced membrane permeability. A possible function for GD3 in membrane permeability has implications for other cellular events such as metabolism, growth and interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhn R, Wiegandt H: Weitere Ganglioside im Menschenhirn, Z Naturforsch 19b:256, 1964.

    Google Scholar 

  2. Ledeen R, Salsman K, Cabrera M: Gangliosides in subacute sclerosing leukoencephalitis: isolation and fatty acid composition of nine fractions. J Lipid Res 9:129–136, 1968.

    Google Scholar 

  3. Hagberg B, Hultquist G, Ohman R, Svennerholm L: Congenital amaurotic diocy. Acta Pediat, Scand 54:116–130, 1965.

    Google Scholar 

  4. Ando S, Yu RK: Isolation and characterization of a novel trisialoganglioside, GTla, from human brain. J Bio Chem 252:6247–6250, 1977.

    Google Scholar 

  5. Das SK, McCullough MS: Gangliosides of bovine optic nerve. Lipids 15:932–936, 1980.

    Google Scholar 

  6. Chou KH, Ambers LSA, Jungalwala FB: Ganglioside composition of chemically induced rat neural tumors and characterization of hematoside from neurinomas. J Neurochem 33:863–873, 1979.

    Google Scholar 

  7. Seyfried T, Yu RK, Miyazawa N: Differential cellular enrichment of gangliosides in the mouse cerebellum: analysis using neurological mutants. J Neurochem 38:551–559, 1982.

    Google Scholar 

  8. Ando S, Yu RK: Fatty acid and long-chain base composition of gangliosides isolated from adult human brain. J Neurosci Res 12:205–211, 1984.

    Google Scholar 

  9. Vanier MT, Holm M, Mansson JE, Svennerholm L: The distribution of lipids in the human nervous system. V Gangliosides and allied neutral glycolipids of infant brain. J Neurochem 21:1375–1384, 1973.

    Google Scholar 

  10. Holm M, Mansson JE, Vanier MT, Svennerholm L: Gangliosides of human, bovine, and rabbit retina. Biochem Biophys Acta 280:356–364, 1972.

    Google Scholar 

  11. Holm M, Mansson JE: Differences in sphingosine and fatty acid patterns of the major gangliosides of bovine retina. FEBS Lett 38:261–262, 1974.

    Google Scholar 

  12. Kaufman B, Basu S, Roseman S: Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem 243:5804–5807, 1968.

    Google Scholar 

  13. Keenan TW, Morre DV, Basu S: Ganglioside biosynthesis: Concentration of glycosphingolipid glycosyltransferases in golgi apparatus from rat liver. J Biol Chem 249:310–315, 1974.

    Google Scholar 

  14. Pacuszka T, Duffard RO, Nishimura RN, Brady RO, Fishman PH: Biosynthesis of bovine thyroid gangliosides. J Biol Chem 253:5839–5846, 1978.

    Google Scholar 

  15. Basu S, Basu M, Kyle JW, Chon HC: Biosynthesis in vitro of gangliosides containing Gg- and Lc- cores. Adv Exp Med Biol 174:249–261, 1984.

    Google Scholar 

  16. Seyfried TN, Miyazawa N, Yu RK: Cellular localization of gangliosides in the developing mouse cerebellum: analysis using the weaver mutant. J Neurochem 41:491–505, 1983.

    Google Scholar 

  17. Seyfried, TN, Yu RK: Cellular localization of gangliosides in the mouse cerebellum: analysis using neurological mutants. Adv Exp Med Biol 174:169–182, 1984.

    Google Scholar 

  18. Seyfried TN, Bernard DJ, Yu RK: Cellular distribution of gangliosides in the developing mouse cerebellum: analysis using the staggerer mutant. J Neurochem 43:1152–1162, 1984.

    Google Scholar 

  19. Sax DS, Hirano A, Shofer RJ: Staggerer, a neurological murine mutant. Neurology 18:1093–1100, 1968.

    Google Scholar 

  20. Hirano A, Dembitzer HM: The fine structure of astrocytes in the adult staggerer. J Neurophthol Exp Neurol 34:1–11, 1976.

    Google Scholar 

  21. Mullen RJ, Eicher EM, Sidman RL: Purkinje cell degenration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 73:208–212, 1976.

    Google Scholar 

  22. Ghetti B, Truex L, Sawyer B, Strada S, Schmidt M: Exaggerated cyclic AMP accumulation and glial cell reaction in the cerebellum during Purkinje cell degeneration in pcd mutant mice. J Neurosci Res 6:789–801, 1981.

    Google Scholar 

  23. Yu RK, Ledeen R, Eng LF: Ganglioside abnormalities in multiple sclerosis. J Neurochem 23:169–174, 1974.

    Google Scholar 

  24. Yu RK, Ueno K, Glaser GH, Tourtellotte WW: Lipid and protein alterations in spinal cord and cord myelin of multiple sclerosis. J Neurochem 39:464–477, 1982.

    Google Scholar 

  25. Norton WT, Poduslo SE, Suzuki K: Subacute sclerosing leukoencephalitis. II Chemical studies including abnormal myelin and abnormal ganglioside pattern. J Neuropathol Exp Neurol 25:582–597, 1966.

    Google Scholar 

  26. Yu RK, Ledeen RW, Gajdusek DC, Gibbs CJ: Ganglioside changes in slow virus disease: analysis of chimpanzee brains infected with Kuru and Creutzfeldt-Jakob agents. Brain Res 70:103-112.

  27. Suzuki K, Chen G: Chemical studies on Jakob-Creutzfeldt disease. J Neuropathol Exp Neurol 25:396–408, 1966.

    Google Scholar 

  28. Tamai Y, Kojima H, Ikuta F, Kumanishi T: Alterations in the composition of brain lipids in patients with Creutzfeldt-Jakob disease. J Neurol Sci 35:59–76, 1978.

    Google Scholar 

  29. Yu, RK, Manuelidis EE: Ganglioside alterations in guinea pig brains at end stages of experimental Creutzfeldt-Jakob disease. J Neurol Sci 35:15–23, 1978.

    Google Scholar 

  30. Bernheimer H, Sperk G, Price KS, Hornykiewicz O: Brain gangliosides in Huntington's disease. Adv Neurol 23:463–471, 1979.

    Google Scholar 

  31. Suzuki K: Ganglioside patterns of normal and pathological brains. In: Inborn Disorders of Sphingolipid Metabolism. Aronson SM and Volk BV (eds), pp 215–230, Oxford, Pergamon Press, London, 1967.

    Google Scholar 

  32. Svennerholm L, Vanier MT: Brain gangliosides in Krabbe disease. Adv Exp Med Biol 19:499–514, 1972.

    Google Scholar 

  33. Suzuki K, Tucker SH, Rorke LB, Suzuki K: Ultrastructural and biochemical sutides of Schilder's disease. J Neuropathol Exp Neurol 29:405–419, 1970.

    Google Scholar 

  34. Igarashi M, Belchis D, Suzuki K: Brain gangliosides in adrenoleukodystrophy. J Neurochem 27:327–328, 1976.

    Google Scholar 

  35. Stoolmiller AC, Dawson G, Kemp SF, Schachner M: Synthesis of glycolipids in mouse glial tumors. J Neurochem 32:637–641, 1979.

    Google Scholar 

  36. Yates AJ, Thompson DK, Boesel CP, Albrightson C, Hart RW: Lipid composition of human neural tumors. J Lipid Res 20:428–436, 1979.

    Google Scholar 

  37. Traylor DT, Hogan EL: Gangliosides of human cerebral astrocytomas. J Neurochem 34:126–131, 1980.

    Google Scholar 

  38. Manuelidis L, Yu RK, Manuelidis EE: Ganglioside content and pattern in human gliomas in culture. Acta Neuropath 38:129–135, 1977.

    Google Scholar 

  39. Pukel CS, Lloyd KO, Travassos LR, Dippold WR, Oettgen HF, Old LJ: GD3 — a prominent ganglioside of human melanoma: detection and characterization by mouse monoclonal antibody. J Exp Med 155:1133–1147, 1982.

    Google Scholar 

  40. Nudelman E, Hakomori SI, Kannagi R, Levery S, Yeh MY, Hellstrom KE, Hellstrom I: Characterization of a human melanoma — associated ganglioside antigen defined by a monoclonal antibody, 4.2. J Biol Chem 257:12752–12756, 1982.

    Google Scholar 

  41. Siddiqui B, Buehler J, DeGregorio MW, Macher B: Differential expression of ganglioside GD3 by human leukocytes and leukemic cells. Cancer Res 44:5262–5265, 1984.

    Google Scholar 

  42. Nakakuma H, Sanai Y, Shiroki K, Nagai Y: Gene regulated expression of glycolipids: appearance of GD3 ganglioside in rat cells on transfection with transforming gene El of human adremovirus type 12 DNA and its transcriptional subunits. J Biochem 96:1471–1480, 1984.

    Google Scholar 

  43. Duffard RO, Fishman PH, Bradley RM, Lauter CJ, Brady RO, Trams EG: Ganglioside composition and biosynthesis in cultured cells derived from CNS. J Neurochem 28:1161–1168, 1977.

    Google Scholar 

  44. Robert J, Rebel G, Mandel P: Glycosphingolipids from cultured astroblasts. J Lipid Res 18:517–522, 1977.

    Google Scholar 

  45. Dawson G, Stoolmiller AC: Comparison of the ganglioside composition of established mouse neuroblastoma cell strains grown in vivo and in tissue culture. J Neurochem 26:225–226, 1976.

    Google Scholar 

  46. Hamberger A, Svennerholm L: Composition of gangliosides and phospholipids of neuronal glial cell enriched fractions. J Neurochem 18:1821–1829, 1971.

    Google Scholar 

  47. Abe T, Norton WT: The characterization of sphingolipids from neurons and astrdglia of immature rat brain. J Neurochem 23:1025–1036, 1974.

    Google Scholar 

  48. Robert J, Freysz L, Sensenbrenner M, Mandel P, Rebel G: Gangliosides of glial cells: a comparative study of normal astroblasts in tissue culture and glial cells isolated on sucrose-ficoll gradients. FEBS Lett 50:144–146, 1975.

    Google Scholar 

  49. Urban PF, Harth S, Freysz L, Dreyfus H: Brain and retinal ganglioside composition from different species determined by TLC and HPTLC, Adv Exp Med Biol 125:149–157, 1980.

    Google Scholar 

  50. Ledeen RW, Skrivanek JA, Nunez J, Sclafani JR, Norton WT, Farooq M: Implications of the distribution and transport of gangliosides in the neuronal system. In: MM Raport and A Gorio (Eds). Gangliosides in Neurological and Neuromuscular Function, Development and Repair. Raven Press New York, 1981, pp 211–223.

    Google Scholar 

  51. Asou H, Brunngraber EG: Absence of ganglioside GM1 in astroglial cells from 21-day old rat brain: Immunohistochemical, histochemical and biochemical studies. Neurochem Res 8:1045–1057, 1983.

    Google Scholar 

  52. Asou H, Brunngraber EC: Absence of ganglioside GM1 in astroglial cells from newborn rat brain. Neurochem Int 6:81–89, 1984.

    Google Scholar 

  53. Berra B, Cestaro B, Sale FO, Venerando B, Beltrame D, Cantone A: Gangliosides and neuraminidase in foetal rat brain. Bull Molec Biol Med 3:86–97, 1978.

    Google Scholar 

  54. Engel ER, Wood JG, Byrd FI: Ganglioside patterns and cholera toxin-peroxidase labeling of aggregating cells from the chick optic tectum. J Neurobiol 10:429–440, 1979.

    Google Scholar 

  55. Irwin LN, Irwin CC: Developmental changes in ganglioside composition of hippocampus, retina, and optic tectum. Devel Neurosci 2:129–138, 1979.

    Google Scholar 

  56. Yavin E, Yavin Z: Ganglioside profiles during neural tissue development. Develop Neurosci 2:25–37, 1979.

    Google Scholar 

  57. Irwin LN, Michael DB, Irwin CC: Ganglioside patterns of fetal rat and mouse brain. J Neurochem 34:1527–1530, 1980.

    Google Scholar 

  58. Dreyfus H, Urban PF, Edel-Harth S, Mandel P: Developmental patterns of gangliosides and phospholipids in chick retina and brain. J Neurochem 25:245–250, 1975.

    Google Scholar 

  59. Dreyfus H, Louis VC, Harth S, Mandel P: Gangliosides in cultured neurons. Neurosci 5:1647–1655, 1980.

    Google Scholar 

  60. Rosner H: Ganglioside changes in the chicken optic lobes and cerebrum during embryonic development. Wilhelm Roux's Arch 188:205–213, 1980.

    Google Scholar 

  61. Rosner H: Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res 236:49–61, 1982.

    Google Scholar 

  62. Hilbig R, Rosner H, Merz G, Segler-Stahl K, Rahmann H: Developmental profiles of gangliosides in mouse and rat cerebral cortex. Wilhelm Rouxs Arch 191:281–284, 1982.

    Google Scholar 

  63. Irwin LN: Phylogeny and ontogeny of vertebrate brain gangliosides. Adv Exp Med Biol 174:319–329, 1984.

    Google Scholar 

  64. Landa CA, Panzette P, Maccioni HJF: Biosynthesis of gangliosides in cultured retina from chick embryos. Develop Brain Res 14:83–92, 1984.

    Google Scholar 

  65. Maccioni HJF, Penzetta P, Arrieta D, Caputto R: Ganglioside glycosyltransferase activities in the cerebral hemispheres from developing rat embryos. Int J Develop Neurosci 2:13–19, 1984.

    Google Scholar 

  66. Wille W, Schaal H, Heinlein VAO: Molecular events during cerebellar development (Abstract). Soc Neurosci Abst 9:944, 1983.

    Google Scholar 

  67. Goldman JE, Hirano M, Yu RK, Seyfried TN: GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J. Neuroimmunol 7:179–192, 1984.

    Google Scholar 

  68. Levine JM, Beasley L, Stallcup WB: The D1.1 antigen: a cell surface marker for germinal cells of the central nervous system. J Neurosci 4:820–831, 1984.

    Google Scholar 

  69. Cheresh DA, Varki AP, Varki NM, Stallcup WB, Levine J, Reisfeld RA: A monoclonal antibody recognizes an Oacylated sialic acid in a human melanoma — associated ganglioside. J Biol Chem 259:7453–7459, 1984.

    Google Scholar 

  70. Cheresh DA, Reisfeld RA, Varki AP: O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science 225:844–846, 1984.

    Google Scholar 

  71. Hatten ME, Messer A: Postnatal cerebellar cells from staggerer mutant mice express embryonic cell surface characteristic. Nature 276:504–506, 1978.

    Google Scholar 

  72. Trenkner E: Postnatal cerebellar cells of staggerer mutant mice express immature components on their surface. Nature 277:566–567, 1979.

    Google Scholar 

  73. Edelman GM, Chuong CM: Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci 79:7036–7040, 1982.

    Google Scholar 

  74. Edel-Harth S, Dreyfus H, Bosch P, Rebel G, Urban PF, Mandel P: Gangliosides of whole retina and rod outer segments. FEBS Lett 35:284–288, 1973.

    Google Scholar 

  75. Dreyfus H, Urban PF, Bosch P, Edel-Harth S, Rebel G, Mandel P: Effect of light on gangliosides from calf retina and photoreceptors. J Neurochem 22:1073–1078, 1974.

    Google Scholar 

  76. Seyfried TN, Yu RK, Miyazawa N, Lai YK: Retinal gangliosides in RCS mutant rats. J Neurochem 39:277–279, 1982.

    Google Scholar 

  77. Caputo BL, Nores GA, Cemborain BN, Caputo R: The effect of light exposure following an intraocular injection of (3H)-N-acetylmannosamine on the labeling of gangliosides and glycoproteins of retina ganglion cells and optic tectum of singly caged chickens. Brain Res 245:231–238, 1982.

    Google Scholar 

  78. Holm M, Mansson JE: Gangliosides of the bovine optic nerve. FEBS Lett 45:159–161, 1974.

    Google Scholar 

  79. Holm M, Mansson JE: Differences in the incorporation of N-(acetyl-3H) monosamine into the sialic acid of the major retinal gangliosides, studies in vivo. FEBS Lett 46:200–202, 1974.

    Google Scholar 

  80. Holm M: Biodegradation of the major rabbit retinal gangliosides, studied in vivo. FEBS Lett 77:225–227, 1977.

    Google Scholar 

  81. Tractenberg MC, Packey DJ: Rapid isolation of mammalian Muller cells. Brain Res 261:43–52, 1983.

    Google Scholar 

  82. Kasai N, Yu RK: The monoclonal antibody A2B5 is specific to ganglioside GQ1C. Brain Res 277:155–158, 1983.

    Google Scholar 

  83. Eisenbarth GS, Walsh FS, Nirenberg M: Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci USA 76:4913–4917, 1979.

    Google Scholar 

  84. Hogan MJ, Alvarado JA, Weddell JE: Histology of the Human Eye. WB Saunders, New York, 1971.

    Google Scholar 

  85. Yu RK, Igbal K: Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 32:293–300, 1979.

    Google Scholar 

  86. Cochran FB, Yu RK, Ando S, Ledeen RW. Myelin gangliosides: an unusual pattern in the avian central nervous system. J Neurochem 36:696–702, 1981.

    Google Scholar 

  87. Mack SR, Szuchet S, Dawson G: Synthesis of gangliosides by cultured oligodendrocytes. J Neurosci Res 6:361–367, 1981.

    Google Scholar 

  88. Caputto R, Maccioni HV, Arce A: Biosynthesis of brain gangliosides. Molec Cell Biochem 4:97–106, 1974.

    Google Scholar 

  89. Maccioni HV, Landa C, Arce A, Caputto R: The biosynthesis of brain gangliosides-Evidence for a ‘transient pool’ and an ‘end product pool’ of gangliosides. Adv Exp Med Biol 83:267–281, 1977.

    Google Scholar 

  90. Yohe HC, Ueno K, Chang NC, Glaser GH, Yu RK: Incorporation of N-acetylmannosamine into rat brain subcellular gangliosides: effect of pentylenetetrazol-induced con vulsions on brain gangliosides. J Neurochem 34:560–568, 1980.

    Google Scholar 

  91. Landa CA, Maccioni HJF, Caputto R: The site of synthesis of gangliosides in the chick optic system. J Neurochem 33:825–838, 1979.

    Google Scholar 

  92. Miller-Podraza H, Bradley RM, Fishman PH: Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21:3260–3265, 1982.

    Google Scholar 

  93. Miller-Podraza H, Fishman PH: Soluble gangliosides in cultured neurotumor cells. J Neurochem 41:860–867, 1983.

    Google Scholar 

  94. Graus F, Cordon-Cardo C, Houghton AN, Melamed MR, Old LJ: Distribution of ganglioside GD3 in the human nervous system detected by R24 mouse monoclonal antibody. Brain Res 324:190–194, 1984.

    Google Scholar 

  95. Magalhaes MM, Coimbra A: Electron microscope radiographic study of glycogen synthesis in the rabbit retina. J Cell Biol 47:263–275, 1970.

    Google Scholar 

  96. Uga S, Smelser GK: Electron microscopic study of the development of retinal Mullerian cells. Invest Ophthalmol. 12:295–307, 1973.

    Google Scholar 

  97. Sarthy PV, Lam DMK: Biochemical studies of isolated glial (Muller) cells from turtle retina. J Cell Biol 78:675–684, 1978.

    Google Scholar 

  98. VanHarreveld A: Swelling of the Muller fibers in the chicken retina. J Neurobiol 13:519–536, 1982.

    Google Scholar 

  99. Newman EA, Frambach DA, Odette LL: Control of extracellular potassium by retinal glial cell K siphoning. Science 225:1174–1175, 1984.

    Google Scholar 

  100. Acosta-Vidrio E, Fedoroff S: Progress in Clinical and Biological Research, Vol 59A: Glial and Neuronal Cell Biology. Alan R Liss 1981.

  101. Duffy PE: Astrocytes: normal, reactive and neoplastic. Raven Press New York, 1983.

    Google Scholar 

  102. Gordon PB, Rubin MS: Membrane transport during erythroid differentiation. J Memb Biol 64:11–21, 1982.

    Google Scholar 

  103. Isselbacher KJ: Increased uptake of amino acids and 2-deoxy-D-glucose by virus transformed cells in culture. Proc Natl Acad Sci USA 69:585–589, 1972.

    Google Scholar 

  104. Searls DB, Edidin M: Lipid composition and lateral diffusion in plasma membranes of teratocarcinoma-derived cell lines. Cell 24:511–517, 1981.

    Google Scholar 

  105. Wooley DW, Gommi BW: Serotonin receptors — VII. Activities of various pure gangliosides as the receptors. Proc Natl Acad Sci USA 53:959–963, 1965.

    Google Scholar 

  106. Gielen W: Uber die Funktion von Gangliosiden. Ein Serotonin und Ca++ Receptor. Z Naturforsch (B) 23b:117–118, 1968.

    Google Scholar 

  107. Price HC, Byard C, Sims W, Wilson R: Gangliosides and other lipid micelles. A study of amine binding by a dialysis/fluorescence method. Neurochem Res 4:63–72, 1979.

    Google Scholar 

  108. Tamir H, Brunner W, Casper D, Rapport MM: Enhancement by gangliosides of the binding of serotonin to Serotonin binding protein. J Neurochem 34:1719–1724, 1980.

    Google Scholar 

  109. Dippold WG, Knuth A, Buschenfeld KHM: Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3-ganglioside antibody. Cancer Res 44:806–810, 1984.

    Google Scholar 

  110. Houghton AN, Mintzer D, Cordon-Cardo C, Welt S, Fliegel B, Vadhan S, Carswell E, Melamed MR, Oettgen HF, Old LJ: Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci USA 82:1242–1246, 1985.

    Google Scholar 

  111. Rosner H, Al-Agtum M, Henke-Fahle S: Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies. Develop Brain Res 18:85–95, 1985.

    Google Scholar 

  112. Cheresh DA, Harper JR, Shulz G, Resifeld RA: Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci USA 81:5767–5771, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyfrieda, T.N., Yu, R.K. Ganglioside GD3: structure, cellular distribution, and possible function. Mol Cell Biochem 68, 3–10 (1985). https://doi.org/10.1007/BF00219383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219383

Keywords

Navigation