Skip to main content
Log in

Cytoplasmic actomyosin fibrils after preservation with high pressure freezing

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The fine structure of the actomyosin system of Physarum polycephalum was investigated in vitrified specimens after applying a pressure of >2.1 kbar and freezing rates of 500 to 5,000° C/s. The frozen specimens were either freeze-substituted or freeze-fractured and compared with material processed according to conventional methods of freeze-etching preparation.

Artifactual alterations, as seen in the form of destroyed areas of the cytoplasm after chemical fixation, were not observed after freeze-substitution. However, small ice crystals formed by recrystallization within most of the cytoplasmic actomyosin fibrils prevented a fine structural analysis.

Such a destruction of the fibrillar fine structure was not found after freezeetching. In replicas of deep-etched objects 10 nm-thick filaments were localized, which could be conclusively identified as F-actin. The actin filaments are located randomly in the peripheral cytoplasm forming the cell cortex. By the process of parallel aggregation, the filaments can be differentiated to fibrils. Thick myosin filaments were not observed. However, structures resembling cross bridges between single actin filaments suggest the existence of oligomeric myosin.

The present investigation shows that, in addition to biomembranes, other cytoplasmic differentiations such as components of the groundplasm can be successfully demonstrated employing the deep-etching technique when the freezing methods are improved by avoiding freeze-protection pretreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach F, Achenbach U, Wohlfarth-Bottennann KE (1979) Plasmalemma invaginations, contraction and locomotion in normal and caffeine-treated protoplasmic drops of Physarum. Eur J Cell Biol 20:12–23

    Google Scholar 

  • Allen NS (1980) Cytoplasmic streaming and transport in the characean alga Nitella. Canad J Bot 58:786–796

    Google Scholar 

  • Alléra A, Beck R, Wohlfarth-Bottermann KE (1971) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. VIII. Identifizierung der Plasmafilamente von Physarum polycephalum als F-Actin durch Anlagerung von heavy meromyosin in situ. Cytobiologie 4:437–449

    Google Scholar 

  • Beck R, Hinssen H, Komnick H, Stockem W, Wohlfarth-Bottermann KE (1970) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. V. Kontraktion, ATPase-Aktivität und Feinstruktur isolierter Actomyosin-Fäden von Physarum polycephalum. Cytobiologie 2:259–274

    Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir S (1975) Freeze-etching nomenclature. Science 190:54–56

    Google Scholar 

  • Britz SJ (1979) Cytoplasmic streaming in Physarum. In: Haupt W, Feinleib ME (eds) Physiology of Movements. Springer-Verlag, Berlin Heidelberg New York, pp 127–149

    Google Scholar 

  • Bullivant S (1970) Present status of freezing techniques. In: Parsons DF (ed) Some biological techniques in electron microscopy. Academic Press, New York London, pp 101–146

    Google Scholar 

  • Camp WG (1936) A method of cultivating myxomycete plasmodia. Bull Torrey Bot Club 63:205–210

    Google Scholar 

  • Daniel JW, Rusch HP (1961) The pure culture of Physarum polycephalum on a partially defined soluble medium. J Gen Microbiol 25:47–59

    Google Scholar 

  • Daniel JW, Järlfors U (1972) Plasmodial ultrastructure of the myxomycete Physarum polycephalum. Tissue and Cell 4:15–36

    Google Scholar 

  • Dempsey GP, Bullivant S (1976) A copper block method for freezing non-cryoprotected tissues to produce icecrystal-free regions for electron microscopy. J Microsc 106:251–270

    Google Scholar 

  • Dierkes U, Stockem W (1978) Cytologische und elektrolyt-chemische Untersuchungen an gefriersubstituierten Amöben und Schleimpilzen. Microsc Acta 80:127–144

    Google Scholar 

  • Edwards HH, Mueller TJ, Morrison M (1979) Distribution of transmembrane polypeptides in freeze fracture. Science 203:1343–1346

    Google Scholar 

  • Fleischer M, Wohlfarth-Bottermann KE (1975) Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10:339–365

    Google Scholar 

  • Gawlitta W, Wolf KV, Hoffmann HU, Stockem W (1980) Studies on microplasmodia of Physarum polycephalum. I. Classification and locomotion behaviour. Cell Tissue Res 209:71–86

    Google Scholar 

  • Harreveld van A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    PubMed  Google Scholar 

  • Hatano S, Oosawa F (1966a) Isolation and characterization of plasmodium actin. Biochim Biophys Acta 127:488–498

    Google Scholar 

  • Hatano S, Oosawa F (1966b) Isolation and characterization of plasmodium actin of myxomycete and its interaction with myosin A from rabbit striated muscle. J Cell Physiol 68:197–202

    Google Scholar 

  • Hatano S, Tatzawa M (1968) Isolation, purification and characterization of myosin B from myxomycete plasmodium. Biochim Biophys Acta 154:507–519

    Google Scholar 

  • Hatano S, Totsuka T, Oosawa F (1967) Polymerisation of plasmodium actin. Biochim Biophys Acta 140:109–122

    Google Scholar 

  • Heuser JE, Kirschner MW (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol 86:212–234

    Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:175–300

    Google Scholar 

  • Hoffmann HU, Stockem W (1979) Comparative fine structure in microplasmodia of the acellular slime mold Physarum polycephalum. In: Sachsenmaier W (ed) Current research on Physarum: Genetics, growth, development, motility. Innsbruck, pp 181–186

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Google Scholar 

  • Huxley HE (1976) The relevance of studies on muscle to problems of cell motility. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor, pp 115–126

  • Isenberg G, Giesbrecht P, Wecke J, Wohlfarth-Bottermann KE (1975) Demonstration of cytoplasmic actomyosin fibrils by the freeze-etching technique. Microsc Acta 77:30–36

    Google Scholar 

  • Kortzfleisch von D (1976) Elektronenmikroskopische Darstellung der Topographie cytoplasmatischer Actomyosin-Fibrillen in Protoplasmaadern von Physarum polycephalum. Protistologica 12:399–414

    Google Scholar 

  • McNutt NS (1977) Freeze-fracture techniques and applications to the structural analysis of the mammalian plasma membrane. In: Nicolson GL, Poste G (eds) Dynamic aspects of cell surface organization. North Holland: Elsevier Biochem Press, pp 75–126

    Google Scholar 

  • McNutt NS (1978) A thin-section and freeze fracture study of microfilament-membrane attachments in choroid plexus and intestinal microvilli. J Cell Biol 79:774–787

    Google Scholar 

  • McNutt NS, Weinstein RS (1970) The ultrastructure of the nexus: A correlated thin-section and freezecleave study. J Cell Biol 47:666–688

    Google Scholar 

  • Moor H (1966) Use of freeze-etching in the study of biological ultrastructure. Int Rev Exp Pathol 5:179–216

    Google Scholar 

  • Moor H, Hoechli M (1970) The influence of high-pressure freezing on living cells. In: Favard P (ed) Proc 7th Intern Congr Electron Microsc Grenoble, Soc Franc Microsc Electron, vol 1, Paris, pp 449–450

  • Moor H, Bellin G, Sandri C, Akert K (1980) The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res 209:201–216

    Google Scholar 

  • Mukherjee TM, Staehlin LA (1971) The fine structural organization of the brush border of intestinal epithelial cells. J Cell Sci 8:573–599

    Google Scholar 

  • Nachmias VT, Huxley HE, Kessler D (1970) Electron microscope observations on actomyosin and actin preparations from Physarum polycephalum and on their interaction with heavy meromyosin subfragment I from muscle myosin. J Mol Biol 50:83–90

    Google Scholar 

  • Nagai R, Kamiya N (1966) Movement of the myxomycete plasmodium. II. Electron microscopic studies on fibrillar structures on the plasmodium. Proc Jpn Acad 42:934–939

    Google Scholar 

  • Nicolson GL (1973) Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol 57:373–378

    Google Scholar 

  • Parducz B (1961) Eine neue Schnellfixierungsmethode im Dienste der Protistenforschung und des Unterrichts. Ann Mus Nat Hung 2:5–15

    Google Scholar 

  • Rash JE, Hudson CS (eds) (1979) Freeze Fracture: Methods, artifacts, and interpretations. Raven Press, New York

    Google Scholar 

  • Rhea RP (1966) Electron microscopic observations on the slime mold Physarum polycephalum with specific reference to fibrillar structures. J Ultrastr Res 15:349–379

    Google Scholar 

  • Riehle U (1968) Schnellgefrieren organischer Präparate für die Elektronenmikroskopie. Chemie-Ing-Techn 40:213–218

    Google Scholar 

  • Schwarz HP (1978) Die Feinstruktur der cytoplasmatischen Aktomyosine in isolierten Protoplasmaadern von Physarum polycephalum unter isotonischen Versuchsbedingungen. Z Pflanzenphysiol 90:331–343

    Google Scholar 

  • Segrest JP, Gulik-Krzywicki T, Sardet C (1974) Assoziation of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intramembranous particles. Proc Natl Acad Sci USA 71:3294–3298

    Google Scholar 

  • Simpson WL (1941) An experimental analysis of the Altmann technique of freeze-drying. Anat Rec 80:173–189

    Google Scholar 

  • Sleytr UB, Robards AW (1977) Plastic deformation during freeze cleavage: A review. J Microsc (Oxf) 110:1–25

    Google Scholar 

  • Steinbrecht RA (1980) Cryofixation without cryo-protectants. Freeze substitution and freeze etching of an insect olfactory receptor. Tissue and Cell 12:73–100

    Google Scholar 

  • Stiemerling R (1970) Produktion und Ausscheidung des Schleims von Physarum confertum. Cytobiologie 1:273–282

    Google Scholar 

  • Tillack TW, Marchesi VT (1970) Demonstration of the outer surface of freeze-etched red blood cell membranes. J Cell Biol 45:649–653

    Google Scholar 

  • Tillack TW, Scott RE, Marchesi VT (1972) The structure of erythrocyte membranes studies by freezeetching. II. Localization of receptors for Phytohemagglutinin and influenca virus to the intramembranous particles. J Exptl Med 135:1209–1227

    Google Scholar 

  • Tilney LG, Mooseker MS (1976) Actin filament-membrane attachment: Are membrane particles involved? J Cell Biol 71:402–416

    Google Scholar 

  • Umrath W (1978) Automatische Gefrierätzung. Mikroskopie 34:6–11

    Google Scholar 

  • Usui N (1971) Fibrillar differentiation in microplasmodia of the slime mold Physarum polycephalum. Dev Growth and Different 13:241–255

    Google Scholar 

  • Wohlfarth-Bottermann KE (1962) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54:514–539

    Google Scholar 

  • Wohlfarth-Bottermann KE (1963) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. II. Lichtmikroskopische Darstellung. Protoplasma 57:747–761

    Google Scholar 

  • Wohlfarth-Bottermann KE (1965) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. III. Entstehung und experimentell induzierbare Musterbildungen. Roux' Archiv 156:371–403

    Google Scholar 

  • Wohlfarth-Bottermann KE, Stockem W (1970) Die Regeneration des Plasmalemms von Physarum polycephalum. Roux' Archiv 164:321–340

    Google Scholar 

  • Wohlfarth-Bottermann KE (1974) Plasmalemma invaginations as characteristic constituents of plasmodia of Physarum polycephalum. J Cell Sci 16:23–37

    Google Scholar 

  • Wohlfarth-Bottermann KE (1975) Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. X. Die Anordnung der Actomyosin-Fibrillen in experimentell unbeeinflußten Protoplasmaadern von Physarum in situ. Protistologica 11:19–30

    Google Scholar 

  • Wolf KV, Hoffmann HU, Stockem W (1979) Fine structure of the mucous layer and endocytotic activity of microplasmodia of the acellular slime mold Physarum polycephalum. In: Sachsenmaier W (ed) Current Research on Physarum. Genetics, growth, development, motility. Innsbruck-Seefeld, pp 187–190

  • Wolf KV, Hoffmann HU, Stockem W (in press) Studies on microplasmodia of Physarum polycephalum: Fine structure and function of the mucous layer. Protoplasma

  • Wolf KV, Stockem W, Wohlfarth-Bottermann KE (1980) Influence of different freeze-fracture pretreatments on the fine structure of Physarum polycephalum. A freeze-fracture and freezesubstitution study. Eur J Cell Biol 22:667–677

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. R. Danneel on the occasion of his 80th birthday

The authors wish to thank Dr. R.L. Snipes (Giessen) for translating the manuscript

The investigation was supported by a Grant from the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, KV., Stockem, W., Wohlfarth-Bottermann, KE. et al. Cytoplasmic actomyosin fibrils after preservation with high pressure freezing. Cell Tissue Res. 217, 479–495 (1981). https://doi.org/10.1007/BF00219359

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219359

Key words

Navigation