Skip to main content
Log in

Selective release of inner core proteins from intestinal microvillus membrane by lithium diiodosalicylate

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Lithium diiodosalicylate (LIS) was used to selectively solubilize proteins from purified intestinal brush border membrane vesicles. Incubation of the vesicles with increasing concentrations of LIS resulted in the progressive release of proteins with total disruption of the membranes being obtained at 200 mM. Maximum selectivity was observed at 20–30 mM LIS which preferentially released actin and other non-glycosylated proteins while all the glycoproteins remained associated with the membrane. Electron micrographs showed that, after LIS treatment, brush border vesicles are partially disrupted and have lost their inner core of microfilaments. Sucrase, trehalase, leucylnaphthylamide hydrolase, γ-glutamyl transpeptidase and alkaline phosphatase all retained more than 70% of their activities and remained associated with the membrane fraction after LIS solubilization (30 mM). The results indicate that lithium diiodosalicylate treatment provides an efficient method for the separation of cytoskeletal proteins from intrinsic membrane glycoproteins and should be very useful for the purification of microvilli proteins and for the study of membrane-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LIS:

Lithium 3,5-diiodosalicylate

LNAase:

leucylnaphthylamide hydrolase

Tris:

Tris (hydroxymethyl) aminomethane

References

  1. Hauser H, Semenza G: CRC Crit Rev Biochem 14:319–345, 1984.

    Google Scholar 

  2. Mooseker MS: Cell 35:11–13, 1983.

    Google Scholar 

  3. Mooseker MS, Bonder EM, Conzelman KA, Fishkind DJ, Howe CL, Keller TCS: J Cell Biol 99:104s-112s, 1984.

    Google Scholar 

  4. Marchesi VT, Andrews EP: Science 174:1247–1248, 1971.

    Google Scholar 

  5. Furthmayr H, Kahane I, Marchesi VT: J Membr Biol 26, 173 -187, 1976.

    Google Scholar 

  6. Steck TL, Yu J: J Supram Struct 1:220–232, 1973.

    Google Scholar 

  7. Von Hippel PH, Schleich T: In Timasheff SN and Fasman GD (eds) Structure and stability of biological macromolecules. Marcel Dekker Inc., New York, 1969. pp 417–574.

    Google Scholar 

  8. Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK: Biochim Biophys Acta 323:98–112, 1973.

    Google Scholar 

  9. Dahlqvist A: Anal Biochem 7:18–25, 1964.

    Google Scholar 

  10. Lloyd JB, Whelan WJ: Anal Biochem 30:467–470, 1969.

    Google Scholar 

  11. Eichholz A: Biochim Biophys Acta 135:475–482, 1967.

    Google Scholar 

  12. Goldbarg JA, Rutenburg AM: Cancer 11:283–291, 1958.

    Google Scholar 

  13. Naftalin L, Sexton M, Whitaker JF, Tracey D: Clin Chim Acta 26:293–296, 1969.

    Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: J Biol Chem 193:265–275, 1951.

    Google Scholar 

  15. Neville DM: J Biol Chem 246:6328–6334, 1971.

    Google Scholar 

  16. Maestracci D, Schmitz J, Preiser H, Crane RK: Biochim Biophys Acta 323:113–124, 1973.

    Google Scholar 

  17. Glossman H, Neville DM: J Biol Chem 246:6339–6346, 1971.

    Google Scholar 

  18. Maestracci D, Preiser H, Hedges T, Schmitz J, Crane RK: Biochim Biophys Acta 382:147–156, 1975.

    Google Scholar 

  19. Bradford MM: Anal Biochem 72:248–254, 1976.

    Google Scholar 

  20. Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G: Biochim Biophys Acta 506:136–154, 1978.

    Google Scholar 

  21. Lemaire J, Maestracci D: Can J Physiol Pharmacol 56:760–770, 1978.

    Google Scholar 

  22. Craig SW, Pollard TD: Trends Biochem Sci 7:88–92, 1982.

    Google Scholar 

  23. Bretscher A: Proc Nat Acad Sci 78:6849–6853, 1981.

    Google Scholar 

  24. Glenney JR, Kaulfus P, Matsudaira P, Weber K: J Biol Chem 256:9283–9288, 1981.

    Google Scholar 

  25. Howe CL, Mooseker MS: J Cell Biol 97:974–985, 1983.

    Google Scholar 

  26. Klebe RJ, Bentley KL, Sasser PJ, Schoen RC: Exp Cell Res 130:111–117, 1980.

    Google Scholar 

  27. Haase W, Schäfer A, Murer H, Kinne R: Biochem J 172:57–62, 1978.

    Google Scholar 

  28. Hatefi Y, Hanstein WG: Proc Nat Acad Sci 62:1129–1136, 1969.

    Google Scholar 

  29. Robinson DR, Jencks WP: J Amer Chem Soc 87:2470–2479, 1965.

    Google Scholar 

  30. Sarris AH, Palade GE: J Cell Biol 93:583–590, 1982.

    Google Scholar 

  31. Thomas L, Kinne R: Biochim Biophys Acta 255:114–125, 1972.

    Google Scholar 

  32. Critchley DR, Howell KE, Eichholz A: Biochim Biophys Acta 394:361–376, 1975.

    Google Scholar 

  33. Hopfer U, Crowe TD, Tandler B: Anal Biochem 131:447–452, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riendeau, D., Lemaire, J., Maestracci, D. et al. Selective release of inner core proteins from intestinal microvillus membrane by lithium diiodosalicylate. Mol Cell Biochem 71, 45–52 (1986). https://doi.org/10.1007/BF00219327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219327

Keywords

Navigation