Skip to main content
Log in

Neuronal and synaptic organization of the lateral geniculate nucleus of the tree shrew, Tupaia glis

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 3∶1.

Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn ET, Hassler R, Wagner A, Christ JF (1981) Ultrastructural changes in tissue columns of fundus striati (Nucleus accumbens) Surgically isolated from all Extrastriatal connections. Acta Anat 110:219–274

    Google Scholar 

  • Andersen P, Eccles JC, Sears TA (1964) The ventro-basal complex of the thalamus: Types of cells, their responses and their functional organization. J Physiol (Lond) 174:370–399

    Google Scholar 

  • Bishop PO (1964) Properties of afferent synapses and sensory neurons in the lateral geniculate nucleus. Int Rev Neurobiol 6:191–255

    Google Scholar 

  • Brauer K, Schober W (1973) Qualitative und quantitative Untersuchungen am Cgl der Laborratte. I. Zur Struktur des Cgl unter besonderer Berücksichtigung der Golgi-Architektonik. J Hirnforsch 14:389–398

    Google Scholar 

  • Brauer K, Werner L, Winkelmann E, Lüth H-J (1981) The dorsal lateral geniculate nucleus of Tupaia glis: a Golgi, Nissl and acetylcholinesterase study. J Hirnforsch 22:59–74

    Google Scholar 

  • Cajal S Ramón y (1911) Histologie de système nerveux de l'homme et de vertébrés. Vol 2 Maloine, Paris

    Google Scholar 

  • Campbell CBG (1966) Taxonomic status of tree shrews. Science 153:436

    Google Scholar 

  • Campos-Ortega JA, Glees P, Neuhoff V (1968) Ultrastructural analysis of individual layers in the lateral geniculate body of the monkey. Z Zellforsch 87:82–100

    Google Scholar 

  • Casagrande VA, Harting JK (1975) Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis. Brain Res 96:367–372

    Google Scholar 

  • Colonnier M, Guillery RW (1964) Synaptic organization in the lateral geniculate nucleus of the monkey. Z Zellforsch 62:333–355

    Google Scholar 

  • Famiglietti EV Jr (1970) Dendro-dendritic synapses in the lateral geniculate nucleus of the cat. Brain Res 20:181–191

    Google Scholar 

  • Famiglietti EV Jr, Peters A (1972) The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 144:285–334

    Google Scholar 

  • Feldman ML, Peters A (1972) Intranuclear rods and sheets in rat cochlear nucleus. J Neurocytol 1:109–127

    Google Scholar 

  • Glickstein M (1967) Laminar structure of the dorsal lateral geniculate nucleus in the tree shrew (Tupaia glis). J Comp Neurol 131:93–102

    Google Scholar 

  • Grossman A, Lieberman AR, Webster KE (1973) A Golgi study of the rat dorsal lateral geniculate nucleus. J Comp Neurol 150:441–466

    Google Scholar 

  • Guillery RW (1966) A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol 128:21–50

    Google Scholar 

  • Guillery RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch 96:1–38

    Google Scholar 

  • Hajdu F, Hassler R, Bak IJ (1973) Electron microscopy study of the substantia nigra and the strio-nigral projection in the rat. Z Zellforsch 146:207–221

    Google Scholar 

  • Hajdu F, Somogyi Gy, Tömböl T (1974) Neuronal and synaptic arrangement in the lateralis posteriorpulvinar complex of the thalamus in the cat. Brain Res 73:89–104

    Google Scholar 

  • Hajdu F, Wagner A, Hassler R (1981) Experimentelle licht- und elektronenmikroskopische Untersuchungen über das Corpus geniculatum laterale (CGL) des Spitzhörnchens (Tupaia glis). Verh Anat Ges 75:833–835

    Google Scholar 

  • Hajdu F, Hassler R, Wagner A (1982) The distribution of crossed and uncrossed optic fibers in the different layers of the lateral geniculate nucleus in the tree shrew (Tupaia glis). In print

  • Hámori J, Pasik T, Pasik P, Szentágothai J (1974) Triadic synaptic arrangements and their possible significance in lateral geniculte nucleus of the monkey. Brain Res 80:379–393

    Google Scholar 

  • Harding BN (1971) Dendro-dendritic synapses, including reciprocal synapses in the ventrolateral nucleus of the monkey thalamus. Brain Res 34:181–185

    Google Scholar 

  • Hassler R (1966) Comparative anatomy of the central visual systems in day- and night-active primates. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Thieme G, Stuttgart, pp 419–434

    Google Scholar 

  • Hubel DN (1975) An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Res 96:41–50

    Google Scholar 

  • Jones EG, Powell TPS (1969a) Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat. Proc Roy Soc B 172:153–171

    Google Scholar 

  • Jones EG, Powell TPS (1969b) An electron microscopic study of the mode of termination of corticothalamic fibers within the sensory relay nuclei of the thalamus. Proc Roy Soc B 172:173–185

    Google Scholar 

  • Jones EG, Rockel AJ (1971) The synaptic organization in the medial geniculate body of afferent fibers ascending from the inferior colliculus. Z Zellforsch 113:44–66

    Google Scholar 

  • Kalil RE, Chase R (1970) Corticofugal influence on activity of lateral geniculate neurons in the cat. J Neurophysiol 33:459–474

    Google Scholar 

  • Laemle LK (1968) Retinal projections of Tupaia glis. Brain Behav Evol 1:473–499

    Google Scholar 

  • Le Vay S (1971) On the neurons and synapses of the lateral geniculate nucleus of the monkey, and the effects of eye enucleation. Z Zellforsch 113:396–419

    Google Scholar 

  • Lieberman AR (1973) Neurons with presynaptic perikarya and presynaptic dendrites in the rat lateral geniculate nucleus. Brain Res 59:35–59

    Google Scholar 

  • Lieberman AR, Webster KE (1972) Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res 42:196–200

    Google Scholar 

  • McIlwain JT, Creutzfeldt OD (1967) A microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J Neurophysiol 30:1–21

    Google Scholar 

  • McKenna MC (1966) Paleontology and the origin of the primates. Folia Primat 4:1–25

    Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwickl Gesch 133:216–246

    Google Scholar 

  • Ohara PT, Sefton AJ, Lieberman AR (1980) Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Res 197:503–506

    Google Scholar 

  • O'Leary JL (1940) A structural analysis of the lateral geniculate nucleus of the cat. J Comp Neurol 73:405–430

    Google Scholar 

  • Pasik P, Pasik T, Hámori J, Szentágothai J (1973) Golgi type II interneurons in the neuronal circuit of the monkey lateral geniculate nucleus. Exp Brain Res 17:18–34

    Google Scholar 

  • Peters A, Palay SL (1966) The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J Anat (Lond) 100:451–486

    Google Scholar 

  • Ralston HJ, III, Herman MM (1969) The fine structure of neurons and synapses in the ventrobasal thalamus of the cat. Brain Res 14:77–97

    Google Scholar 

  • Rinvik E, Grofová I (1974) Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat Embryol 146:57–93

    Google Scholar 

  • Romer AS (1967) Major steps in vertebrate evolution. Science 158:1629–1637

    Google Scholar 

  • Simpson GG (1945) Principles of classification and a classification of mammals. Bull Am Mus Natl Hist 85:1–350

    Google Scholar 

  • Singer W, Creutzfeldt OD (1970) Reciprocal lateral inhibition of on- and off-centre neurons in the lateral geniculate body of the cat. Exp Brain Res 10:311–330

    Google Scholar 

  • Singer W, Pöppel E, Creutzfeldt OD (1972) Inhibitory interaction in the cat's lateral geniculate nucleus. Exp Brain Res 14:210–226

    Google Scholar 

  • Somogyi Gy, Hajdu F, Tömböl T (1978) Ultrastructure of the anterior ventral and anterior medial nuclei of the cat thalamus. Exp Brain Res 31:417–431

    Google Scholar 

  • Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36:151–179

    Google Scholar 

  • Szentágothai J (1963) The structure of the synapse in the lateral geniculate body. Acta Anat (Basel) 55:166–185

    Google Scholar 

  • Szentágothai J (1970) Glomerular synapses, complex synaptic arrangements, and their operational significance. In: Schmitt FO (ed) The Neurosciences, Second Study Program. Rockefeller Univ Press, New York, pp 427–443

    Google Scholar 

  • Szentágothai J, Hámori J, Tömböl T (1966) Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp Brain Res 2:283–301

    Google Scholar 

  • Tello F (1904) Disposición macroscopica y estructura del cuerpo geniculado externo. Trab Inst Cajal Invest Biol 3:39–62

    Google Scholar 

  • Wong-Riley MTT (1972a) Neuronal and synaptic organization of the normal dorsal lateral geniculate nucleus of the squirrel monkey, Saimiri sciureus. J Comp Neurol 144:25–60

    Google Scholar 

  • Wong-Riley MTT (1972b) Terminal degeneration and glial reactions in the lateral geniculate nucleus of the squirrel monkey after eye removal. J Comp Neurol 144:61–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajdu, F., Hassler, R. & Somogyi, G. Neuronal and synaptic organization of the lateral geniculate nucleus of the tree shrew, Tupaia glis . Cell Tissue Res. 224, 207–223 (1982). https://doi.org/10.1007/BF00217280

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217280

Key words

Navigation