Skip to main content
Log in

Evolution of the distortion of perovskites under pressure: An EXAFS study of BaZrO3, SrZrO3 and CaGeO3

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have investigated the evolution of the distortion of several oxide perovskites with increasing pressure, using EXAFS in the diamond anvil cell. Cubic perovskite BaZrO3 remains cubic up to 52 GPa. Orthorhombic perovskite CaGeO3 becomes less distorted as pressure increases, becomes tetragonal at about 12 GPa and evolves toward cubic structure, still not obtained at 23 GPa. The distortion of orthorhombic perovskite SrZrO3 first increases with pressure up to 8 GPa, then decreases until the perovskite becomes cubic at 25 GPa. The results are interpreted in terms of a systematics, relating the distortion to the ratio f of the volumes of the AO12 dodecahedron and the BO6 octahedron, and to the compressibilities of the polyhedra. For cubic perovskites, f=5, which may correspond to a situation where the compressibilities of octahedra and dodecahedra are equal.

The behavior of SrZrO3 offers a clue to predict the evolution of the distortion of MgSiO3 at lower mantle pressures. It is suggested that the increase in distortion experimentally observed at lower pressures should stop above about 10 GPa, and the distortion decrease until the perovskite undergoes ferroelastic transitions to tetragonal and cubic phases, at pressures possibly below the pressure at the core-mantle boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahtee A, Ahtee M, Glazer AM, Hewat AW (1976) The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr B32:3243–3246

    Google Scholar 

  • Bonello B (1989) Instabilités structurales induites sous pression dans les composés de structure pérovskite. PhD Thesis, University Paris 6

  • Brown GE, Parks GA (1989) Synchrotron-based X-ray absorption studies of cation environment in Earth materials. Rev Geophys 27:519–533

    Google Scholar 

  • Brown GE, Calas G, Waychunas GA, Petiau J (1988) X-ray absorption spectroscopy and its applications in mineralogy and geochemistry. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews Mineralogy, vol 18, 431–512. Mineralogical Soc. America, Washington DC

    Google Scholar 

  • Calas G, Bassett WA, Petiau J, Steinberg M, Tchoubar D, Zarka A (1984) Some mineralogical applications of synchrotron radiation. Phys Chem Minerals 11:17–36

    Google Scholar 

  • Calas G, Brown GE, Waychunas GA, Petiau J (1987) X-ray absorption spectroscopic studies of silicate glasses and minerals. Phys Chem Minerals 15:19–29

    Google Scholar 

  • Dartyge E, Depautex C, Dubuisson JM, Fontaine A, Jucha A, Leboucher P, (1986) Tourillon G X-ray absorption in dispersive mode a new spectrometer and a data acquisition system for fast kinetics. Nucl Instrum Methods A246:452–460

    Google Scholar 

  • Fischer M, Bonello B, Polian A, Léger JM (1989) Elasticity of SrTiO3 perovskite under high pressure. In: Navrotsky A, Weidner DJ (eds) Perovskite. Geophysical Monograph 45, American Geophysical Union, Washington DC

    Google Scholar 

  • Foëx M, Traverse JP, Coutures J (1967) Etude de la structure cristalline des zirconates alcalino-terreux à haute température. CR Acad Sci Paris 264:1837–1840

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry. Wiley, New York

    Google Scholar 

  • Hemley RJ, Jackson MD, Gordon RG (1987) Theoretical study of the structure, lattice dynamics, and equation of state of perovskite-type MgSiO3 and CaSiO3. Phys Chem Minerals 14:2–12

    Google Scholar 

  • Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenitetype): single crystal diffraction study. Amer Mineral 67:788–799

    Google Scholar 

  • Kapusta B (1990) Etude des propriétés de transport des corps de structure pérovskite: application à la pérovskite MgSiO3. PhD thesis, University Paris 6

  • Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 Gigapascals. Science 235:668–670

    Google Scholar 

  • Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Minerals 14:350–354

    Google Scholar 

  • Liebermann RC, Jones LEA, Ringwood AE (1977) Elasticity of aluminate, titanate, stannate and germanate compounds with the perovskite structure. Phys Earth Planet Interiors 14:165–178

    Google Scholar 

  • Liu X, Wang Y, Liebermann RC (1990) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite at high temperature. Geophys Res Lett 15:1231–1234

    Google Scholar 

  • Longo JM, Kafalas JA (1968) Pressure-induced structural changes in the system Ba1−x Sr x RuO3. Mater Res Bull 3:687–692

    Google Scholar 

  • Matsui M (1988) Molecular dynamics study of MgSiO3 perovskite. Phys Chem Minerals 16:234–238

    Google Scholar 

  • Matsui M, Akaogi M, Matsumoto T (1986) Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3. Phys Chem Minerals 14:101–106

    Google Scholar 

  • McKale AG, Veal BW, Paulikas AP, Chan SK, Knapp GS (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J Am Chem Soc 110:3763–3768

    Google Scholar 

  • Muller O, Roy R (1974) The major ternary structural families. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Navrotsky A, Weidner DJ (eds) (1989) Perovskite, a structure of great interest to geophysics and materials science. Geophysical Monograph 45, American Geophysical Union, Washington, DC

    Google Scholar 

  • O'Keefe M, Hyde BG, Bovin JO (1979) Contribution to the crystal chemistry of orthorhombic perovskites: MgSiO3 and NaMgF3. Phys Chem Minerals 4:299–305

    Google Scholar 

  • Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696

    Google Scholar 

  • Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Minerals 16:415–420

    Google Scholar 

  • Samara GA (1966) Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3. Phys Rev 151:378–386

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the thermal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Syono Y, Akimoto S, Kohn K (1969) Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J Phys Soc Jpn 26:993–999

    Google Scholar 

  • Tarantola A (1987) Inverse problem theory. Elsevier, Amsterdam

    Google Scholar 

  • Tarrida M, Richet P (1989) Equation of state of CaSiO3 perovskite to 96 GPa. Geophys Res Lett 16:1351–1354

    Google Scholar 

  • Teo BK (1986) EXAFS: Basic principles and data analysis. Springer Verlag, Berlin

    Google Scholar 

  • Wall A, Price GD, Parker SC (1986) A computer simulation of the structure and elastic properties of MgSiO3 perovskite. Mineral Mag 50:693–707

    Google Scholar 

  • Wang Y, Guyot F, Yeganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite. Science 248:468–471

    Google Scholar 

  • Wolf GH, Bukowinski MST (1985) Ab initio structural and thermoelastic properties of orthorhombic MgSiO3 perovskite. Geophys Res Lett 12:809–812

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnani MH, Syono Y (eds) High Pressure Research in Mineral Physics. Terra Science, Tokyo

    Google Scholar 

  • Xiong D, Ming LC, Manghnani MH (1986) High-pressure transformations and isothermal compression in CaTiO3 (perovskite). Phys Earth Planet Int 43:244–252

    CAS  PubMed  Google Scholar 

  • Yagi T, Mao HK, Bell PM (1978) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Minerals 3:97–110

    Google Scholar 

  • Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Elasticity of MgSiO3 in the perovskite structure. Science 243:787–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrault, D., Poirier, J.P. Evolution of the distortion of perovskites under pressure: An EXAFS study of BaZrO3, SrZrO3 and CaGeO3 . Phys Chem Minerals 18, 91–105 (1991). https://doi.org/10.1007/BF00216602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216602

Keywords

Navigation