Skip to main content
Log in

The second and third optic ganglia of the worker bee

Golgi studies of the neuronal elements in the medulla and lobula

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The gross morphology and the fine-structural characteristics of neurones of the second and third optic ganglia of the honeybee Apis mellifera were investigated light microscopically on the basis of Golgi (selective silver)- and reduced silver preparations.

The second optic ganglion, the medulla, is ovoid in shape and has a slightly convex distal surface and a slightly concave proximal surface. The medullar outer levels are characteristically composed of neuronal arrangements showing strict precision of their geometrical spacing proximally as far as a pronounced layer of tangential fibre elements comprising the serpentine layer of the medulla. At the inner medullary levels retinotopic channels are again multiplied, and the arrangement of axons and dendrites contribute to a complex lattice.

The third optic ganglion, the lobula, is interposed between the medulla and the protocerebrum. It is the site of termination of the third-order neurones. The lobula in hymenopterans appears, in contrast to dipterans, odonates and lepidopterans, as a single neuropilic mass.

A short review of the electrophysiological data concerning these two ganglia has been tentatively correlated with some of the anatomical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boschek CB (1971). On the fine structure of the peripheral retina and the lamina of the fly. Musca domestica. Z Zellforsch 110:336–349

    Google Scholar 

  • Braitenberg V (1967). Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res. 3:271–298

    Google Scholar 

  • Braitenberg V (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7:235–242

    Google Scholar 

  • Braitenberg V, Strausfeld NJ (1973). Principles of the mosaic organization in the visual systems neuropil of Musca domestica L. In: Jung R (ed) Handbook of sensory physiology. Vol. VII/3A: Central processing of visual information. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cajal SR (1909) Nota sobre la estructura de la mosca (M. vomitoria L.). Trab Lab Invest Biol Univ Madrid 7:217–257

    Google Scholar 

  • Cajal SR, Sanchez D (1915) Contribucion al conocimiento de los centros nerviosos de los insectes. Trab Lab Invest Biol Univ Madrid 13:1–168

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1972) The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z Zellforsch 124:561–585

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1973) Synaptic connections of intrinsic cells and basket arborisations in the external plexiform layer of the fly's eye. Brain Res 59:119–136

    Google Scholar 

  • Chi C, Carlson SD (1976) Close apposition of receptor cell axons in the housefly, Musca domestica. Cell Tissue Res 167:537–545

    Google Scholar 

  • Chi C, Carlson SD (1980) Membrane specializations in the first optic neuropil of the housefly Musca domestica L. II. Junctions between neurons. J Neurocytol 9:429–449

    Google Scholar 

  • Ciaccio MG (1976) L'oeil des Dipteres. J Zool (Paris) 5:313–319

    Google Scholar 

  • De Voe RD (1980) Movement sensitive cells in the fly's medulla. J Comp Physiol 138:93–119

    Google Scholar 

  • Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly optic lobe. J Comp Physiol 100:5–23

    Google Scholar 

  • Eckert HE (1978) Response properties of dipteran giant visual interneurons involved in control of optomotor behaviour. Nature 271:358–360

    Google Scholar 

  • Eckert H (1980) Functional properties of the H1-neurone in the third optic ganglion of the blow fly, Phaenicia. J Comp Physiol 135:29–39

    Google Scholar 

  • Eckert H, Bishop LG (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata (Diptera, Calliphoridae). J Comp Physiol 126:57–86

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin

    Google Scholar 

  • Hausen K (1976a) Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der Schmeißfliege Calliphora erythrocephala. Doctoral Dissertation. University of Tübingen

  • Hausen K (1976b) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z Naturforsch 31c:629–633

    Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Google Scholar 

  • Hickson SJ (1885) The eye and optic tract of insects. Quart J Micr Sci 2, Band XXV

  • Kenyon FG (1896). The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  • Kenyon FG (1897) The optic lobes of the bee's brain in the light of recent neurological methods. Am Nat 31:369–376

    Google Scholar 

  • Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J Comp Physiol 113:17–34

    Google Scholar 

  • Kien J, Menzel R (1977b). Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53

    Google Scholar 

  • Leydig F (1885) Zum feineren Bau der Arthropoden. Arch Anat Physiol

  • Melamed J, Trujillo-Cenoz O (1968) The fine structure of the central cell in the ommatidia of Dipterans. J Ultrastruct Res 21:313–334

    Google Scholar 

  • Mimura K (1971) Movement discription by the visual system of flies. Z vergl Physiol 73:105–138

    Google Scholar 

  • Pierantoni R (1976) A look into the cockpit of the fly. The architecture of the lobula plate. Cell Tissue Res 171:101–122

    Google Scholar 

  • Ribi WA (1974) Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tissue Res 148:277–286

    Google Scholar 

  • Ribi WA (1975a). The neurons of the first optic ganglion of the bee, Apis mellifera. Advances in Anatomy 50:1–43

    Google Scholar 

  • Ribi WA (1975b). The organization of the lamina ganglionaris of the bee. Z Naturforsch 30c:851–852

    Google Scholar 

  • Ribi WA (1975c). The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tissue Res. 165:103–111

    Google Scholar 

  • Ribi WA (1976). The first optic ganglion of the bee. II. Topographical relationships of second order neurons within a cartridge and to groups of cartridges. Cell Tissue Res. 171:359–373

    Google Scholar 

  • Ribi WA (1978) Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly. Cell Tissue Res. 195:299–308

    Google Scholar 

  • Ribi WA (1979) The first optic ganglion of the bee. III. Regional comparison of photoreceptor cell axon morphology. Cell Tissue Res 200:345–357

    Google Scholar 

  • Ribi WA (1981) The first optic ganglion of the bee. IV. Synaptology of receptor cell axons and first order interneurons (a Golgi-EM study). Cell Tissue Res 215:443–464

    CAS  PubMed  Google Scholar 

  • Riehle A (1980) Reaktionsmuster zentraler visueller Interneurone der Honigbiene (Apis mellifera) auf hetero-chromatisches Flickerlicht. Dissertation, FB23 der Freien Universität Berlin

  • Sommer EW, Wehner R, (1975). The retina lamina projection in the visual system of the bee, Apis mellifera. Cell Tissue Res 163:45–61

    Google Scholar 

  • Strausfeld NJ (1970a). Golgi studies on insects. Part II. The optic lobes of diptera. Phil Trans Soc B 258:175–223

    Google Scholar 

  • Strausfeld NJ (1970b). Variations and invariants of cell arrangements in the visual system and corpora ped. Verb Zool Ges 64:97–108

    Google Scholar 

  • Strausfeld NJ (1971a). The organization of the insect visual system (light microscopy). I. Projections and arrangements of neurons in the lamina ganglionaris of diptera. Z Zellforsch 121:377–441

    Google Scholar 

  • Strausfeld NJ (1971b). The organization of the insect visual system (light microscopy). II. The projection of fibres across the first optic chiasma. Z Zellforsch 121:442–454

    Google Scholar 

  • Strausfeld NJ (1976a). Mosaic organizations, layers, and visual pathways in the insect brain. In: Zettler F, Weiler R (eds) Neural principles in vision. Springer, Berlin Heidelberg New York, pp 245–279

    Google Scholar 

  • Strausfeld NJ (1976b) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Braitenberg V (1970) The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z Vergl Physiol 70:95–104

    Google Scholar 

  • Strausfeld NJ, Nässle DR (1980) Neuroarchitecture of brain regions that subserve the compound eyes of crustacean and insects. In: Autrum H (ed) Handbook of sensory physiology, Vol. VII/6B: Comparative physiology and evolution of vision in invertebrates. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Trujillo-Cenoz O (1965) Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Res 13:1–23

    Google Scholar 

  • Varela FG (1970) Fine structure of the visual system of the honey bee (Apis mellifera). II. The lamina. J Ultrastruct Res 31:178–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribi, W.A., Scheel, M. The second and third optic ganglia of the worker bee. Cell Tissue Res. 221, 17–43 (1981). https://doi.org/10.1007/BF00216567

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216567

Key words

Navigation