Skip to main content

Advertisement

Log in

Allele-specific expression of the cytoplasmic exon of HLA-DQB1 gene

  • Original Articles
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The β chain of the HLA-DQ molecule is shorter by eight amino acid residues than other major histocompatibility complex class II β chains due to elimination of the fifth exon coding for part of the cytoplasmic domain. This elimination is caused by one base substitution in the splice accepter site of the exon. We found that two HLA-DQB1 alleles, DQB1 * 0503 and DQB1 * 0601, did not have this substitution, and the exon was utilized in these two alleles. However, two forms of HLA-DQB mRNA, with or without exon 5, were generated in Epstein-Barr virus-transformed cell lines homozygous for DQB1 * 0503 or DQB1*0601, indicating alternative mRNA splicing. The alternative splicing of DQB1*0601 mRNA was also found in peripheral blood lymphocytes and L cell transfectants. To investigate the functional relevance of the allele-specific long cytoplasmic tail of HLA-DQ β chain, we developed three types of L cell transfectants expressing exclusively the HLA-DQw6 molecules with short cytoplasmic tail, long cytoplasmic tail, or both forms of the β chain, and used them as antigen presenting cells for streptococcal cell wall antigen-specific T cell lines. These three types of transfectants could function almost equally well as antigen presenting cells. It was thus demonstrated that both forms of HLA-DQ β chain, with or without eight amino acid residues coded for by the exon 5, can be associated with the HLA-DQ α chain, be expressed on the cell surface, and function as restriction molecules in antigen recognition by the CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boss, J. M. and Strominger, J. L.: Cloning and sequence analysis of the human major histocompatibility complex gene DC-3β. Proc Natl Acad Sci USA 81: 5199–5203, 1984

    Google Scholar 

  • Breathnach, R. and Chambon, P.: Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383, 1981

    Google Scholar 

  • Briata, P., Radka, S. F., Sartoris, S., and Lee, J. S.: Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ β-chain proteins: Allelic polymorphism in splicing and polyadenylation sites. Proc Natl Acad Sci USA 86: 1003–1007, 1989

    CAS  PubMed  Google Scholar 

  • Eccles, S. J. and McMaster, W. R.: DNA sequence analysis of a rat RT1 class II Aβ gene. Immunogenetics 22: 653–663, 1985

    Google Scholar 

  • Groenen, M. A. M., Poel, J. J., Dijkhof, R. J. M., and Giphart, M. J.: The nucleotide sequence of bovine MHC class II DQB and DRB genes. Immunogenetics 31: 37–44, 1990

    Google Scholar 

  • Gross-Bellard, M., Oudet, P., and Chambon, P.: Isolation of high molecular weight DNA from mammalian cells. Eur J Biochem 36: 32–38, 1973

    Google Scholar 

  • Hirayama, K., Matsushita, S., Kikuchi, I., Iuchi, M., Ohta, N., and Sasazuki, T.: HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 327: 426–430, 1987

    Google Scholar 

  • Hurley, C. K. and Steiner, N.: DQ polymorphism: An analysis of DQw4α and β membrane proximal regions. Hum Immunol 27: 100–110, 1990

    Google Scholar 

  • Jonsson, A.-K., Hyldig-Nielsen, J.-J., Servenius, B., Larhammar, D., Andersson, G., Jorgensen, F., Peterson, P. A., and Rask, L.: Class II genes of the human major histocompatibility complex. Comparisons of the DQ and DX α and β genes. J Biol Chem 262: 8767–8777, 1987

    Google Scholar 

  • Kamikawaji, N., Fujisawa, K., Yoshizumi, H., Fukunaga, M., Yasunami, M., Kimura, A., Nishimura, Y., and Sasazuki, T.: HLA-DQ-restricted CD4+ T cells specific to streptococcal antigen present in low but not in high responders. J Immunol 146: 2560–2567 1991

    Google Scholar 

  • Keller, E. B. and Noon, W. A.: Intron splicing: A conserved signal in introns of animal pre-mRNAs. Proc Natl Acad Sci USA 81: 7417–7420, 1984

    Google Scholar 

  • Kikuchi, I., Ozawa, T., Hirayama, K., and Sasazuki, T.: An HLA-linked gene controls susceptibility to lepromatous leprosy through T cell regulation. Lepr Rev 57: 139–142, 1986

    Google Scholar 

  • Klein, J. and Takahata, N.: The major histocompatibility complex and the quest for origins. Immunol Rev 113: 5–25, 1990

    Google Scholar 

  • Larhammar, D., Hammerling, U., Denaro, M., Lund, T., Fravell, R. A., Rask, L., and Peterson, P. A.: Structure of the murine immune response I-A locus: Sequence of the I-Aβ gene and adjacent β-chain second domain exon. Cell 349: 179–188, 1983a

    Google Scholar 

  • Larhammar, D., Hyldig-Nielsen, J. J., Servenius, B., Anderson, G., Rask, L., and Peterson, P. A.: Exon-Intron organization and complete nucleotide sequence of a human major histocompatibility antigen DCβ gene. Proc Natl Acad Sci USA 80: 7313–7317, 1983b

    Google Scholar 

  • Malissen, M., Hunkapiller, T., and Hood, L.: Nucleotide sequence of a light chain genes of the mouse I-A subregion: Aβd. Science 221: 750–754, 1983

    Google Scholar 

  • Marsh, S. G. E. and Bodmer, J. G.: HLA-DR and −DQ epitopes and monoclonal antibody specificity. Immunol Today 10: 305–312, 1989

    Google Scholar 

  • Nabavi, N., Ghogawara, Z., Myer, A., Griffith, I. J., Wade, W. F., Chen, Z. Z., McKean, D. J., and Glimcher, L. H.: Antigen presentation abrogated in cells expressing truncated Ia molecules. J Immunol 142: 1444–1447, 1989

    Google Scholar 

  • Nishimura, Y. and Sasazuki, T.: Suppressor T cells control the HLA-linked low responsiveness to streptococcal antigen in man. Nature 302: 67–69, 1983

    Google Scholar 

  • Ohta, N., Minai, M., and Sasazuki, T.: Antigen-specific suppressor T lymphocytes (Leu2a+ 3a) in human Shistosomasis Japonica. J Immunol 131: 2524–2528, 1983

    Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R.: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467, 1977

    CAS  PubMed  Google Scholar 

  • Sasazuki, T., Kohno, Y., Iwamoto, I., Tanimura, M., and Naito, S.: Association between HLA haplotype and low responsiveness to tetanus toxid in mam. Nature 272: 359–361, 1978

    Google Scholar 

  • Sasazuki, T., Kikuchi, I., Hirayama, K., Matsushita, S., Ohta, N., and Nishimura, Y.: HLA-linked immune suppression in humans. Immunology Suppl (2): 21–24, 1989

    Google Scholar 

  • Scherrer, K.: Isolation and sucrose gradient analysis of RNA. In K. Habel and N. P. Salzman (eds): Fundamental Techniques in Virology, pp. 413–432, Academic Press, New York, 1969

    Google Scholar 

  • Schreuder, G. M. Th., Tilanus, M. G. J., Buntrop, R. E., Bruining, G. J., Giphart, M. J., van Rood, J. J., and de Vries, R. R. P.: HLA-DQ polymorphism associated with resistance to type I diabetes detected with monoclonal antibodies, isoelectric point differences, and restriction fragment length polymorphism. J Exp Med 164: 938–943, 1986

    Google Scholar 

  • Scott, P. C., Maddox, J. F., Gogolin-Ewens, K. J., and Brandon, M. R.: The nucleotide sequence and evolution of ovine MHC class II B genes: DQB and DRB. Immunogenetics 34: 80–87, 1991

    Google Scholar 

  • Sinha, A. A., Brautbar, C., Szafer, Fanny, Friedmann, A., Tzfoni, E., Todd, J. A., Steinman, L., and McDevitt, H. O.: A newly characterized HLA DQβ allele associated with pemphigus vulgaris. Science 239: 1026–1029, 1988

    Google Scholar 

  • Sollid, L. M., Markussen, G., Ek, J., Gjerde, H., Vartdal, F., and Thorsby, E.: Evidence for a primary association of Celiac disease to a particular HLA-DQ α/β heterodimer. J Exp Med 169: 345–350, 1989

    Google Scholar 

  • Todd, J. A., Bell, J. I., and McDevitt, H. O.: HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599–604, 1987

    Google Scholar 

  • Tonnelle, C., DeMars, R., and Long, E.: A new β chain gene in HLA-D with a distinct regulation of expression. EMBO J 4: 2839–2847, 1985

    Google Scholar 

  • Tsukamoto, K., Yasunami, M., Kimura, A., Inoko, H., Ando, A., Hirose, T., Inayama, S., and Sasazuki, T.: DQw1 β gene from HLA-DR2-Dw12 consists of six exons and expressed multiple DQw1 β polypeptides through alternative splicing. Immunogenetics 25: 343–346, 1987

    CAS  PubMed  Google Scholar 

  • Turco, E., Care, A., Compagnone-Post, P., Robinson, C., Cascino, I., and Trucco, M.: Allelic oorms of alpha- and beta-chain genes coding DQw1-positive heterodimers. Immunogenetics 26: 282–290, 1987

    Google Scholar 

  • Watanabe, H., Okumura, M., Hirayama, K., and Sasazuki, T.: HLA-Bw54-DR4-DRw53-DQw4 haplotype controls nonresponsiveness to hepatitis-B surface antigen via CD8-positive suppressor T cells. Tissue Antigens 36: 69–74, 1990

    Google Scholar 

  • WHO Nomenclature Committee for factors of the HLA system: Nomenclature for factors of the HLA system, 1990. Immunogenetics 33: 301–309, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M83920-83923.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senju, S., Kimura, A., Yasunami, M. et al. Allele-specific expression of the cytoplasmic exon of HLA-DQB1 gene. Immunogenetics 36, 319–325 (1992). https://doi.org/10.1007/BF00215661

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215661

Keywords

Navigation