Skip to main content
Log in

The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The phosphoenolpyruvate-dependent sugar transport system (PTS) is present in a large variety of bacteria. It catalyzes transport and phosphorylation of hexoses and hexitols at the expense of phosphoenolpyruvate. Only three of four enzymes are required for this entire sequence. Each component has been isolated and purified to the homogeneity from one bacterial species or another allowing recent investigations intomechanistic aspects of energy coupling, energy conservation, transport and regulation using well-characterized enzymes. In each case the phosphorylation of the enzyme is a key element in that enzymes function.

The initial step in the energy conversion process is the EI catalyzed conversion of phosphoenolpyruvate to pyruvate and P-HPr. EII is a metal requiring hydrophobic enzyme which is active only as a dimer. Kinetic and gel filtration data confirm that it forms functional ternary complexes with HPr or P-Hpr and phosphoenolpyruvate or pyruvate which influence both the degree of dimerization and the specific activity of the dimer. The dimer appears to carry only one phosphoryl group suggesting that negative cooperativity or a flip-flop mechanism may be involved in the sequence of phosphoryl group transfer.

Many of the PTS phosphoenzyme intermediates carry the phosphoryl group as a phospho-histidine. A general mechanism for the transfer of the phosphoryl group to and from the active site histidine residue in each protein has been established with high resolution 1H NMR data. At physiological pH the active site histidine is deprotonated, whereas the phosphohistidine is protonated. Consequently the histidine, as a strong nucleophile, can abstract the phosphoryl group from the donor while protonation destabilizes the phosphohistidine facilitating passage of the phosphoryl group to the following enzyme intermediate. The change in protonation state accompanies a phosphorylation induced conformational change in the carrier.

The ability of the PTS to regulate the activity of other permeases and catabolic enzymes has been attributed to EIII Glc. Data obtained with mutants suggest that changes in the phosphorylation state alter the regulatory properties of the enzyme. The nonphosphorylated species blocks various permeases and suppresses adenylate cyclase activity thereby inhibiting the synthesis of catabolic enzyme systems. The phosphorylated species stimulates adenylate cyclase and permits the uptake of inducers leading to the initiation of catabolic enzyme synthesis. Experiments with the isolated EIII Glc confirm that a phosphoenzyme intermediate exists.

Transport and phosphorylation of the sugar are catalyzed by a membrane-bound EII via a phosphoenzyme intermediate which can be reached from P-HPr, P-EIII or sugar-P. The phosphorylation state controls the affinity of the enzyme for its substrates. EII is high affinity for P-HPr or P-EIII and low affinity for sugar. P-EII is high affinity for sugar and low affinity for P-HPr or P-EIII. The affinity of the enzyme for sugar substrates is controlled by the oxidation state of a dithiol. The reduced, dithiol form is high affinity for sugar substrates. The oxidized, disulfide form, is low affinity. Phosphorylation of the enzyme chould shift the affinity for substrates by altering the oxidation state of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, J., Epstein, W., 1974. Proc. Natl. Acad. Sci. U.S.A. 71: 2895.

    Google Scholar 

  2. Melton, T., Hartman, P. E., Stratis, J. P., Lee, T. L. & Davis, A. T., 1978. J. Bacteriol 133: 708.

    Google Scholar 

  3. Hays, J. B. In: Bacterial Transport, Rosen, B. P. ed., pp. 43–102. Marcel Dekker, New York, 1978.

  4. Postma, P. W. & Roseman, S., 1976. Biochim. Biophys. Acta 457: 213–257.

    Google Scholar 

  5. Reenstra, W. W., Patel, L., Rottenburg, H. & Kaback, H. R., 1980. Biochemistry 19, 1–9.

    Google Scholar 

  6. Robillard, G. T., Dooijewaard, G. & Lolkema, J., 1979. Biochemistry 18: 2984–2989.

    Google Scholar 

  7. Waygood, E. B. & Steeves, T., 1980. Can. J. Biochem. 58: 40–48.

    Google Scholar 

  8. Waygood, E. B., Weigel, N., Nakazawa, A., Kukuruzinska, M. & Roseman, S., 1977. Proc. Can. Fed. Biol. Soc. 20: 54.

    Google Scholar 

  9. Brouwer, M., Elferink, M. G. L. & Robillard, G. T., Biochemistry, 1982. Biochemistry 21:82–88.

    Google Scholar 

  10. Waygood, E. B., Meadow, N. D. & Roseman, S., 1979. Anal. Biochem. 95: 293–304.

    Google Scholar 

  11. Misset, O., Brouwer, M. & Robillard, G. T., 1980. Biochemistry 19: 883–890.

    Google Scholar 

  12. Hoving, H., Lolkema, J. S. & Robillard, G. T., 1981. Biochemistry 20: 87–93.

    Google Scholar 

  13. Misset, O. & Robillard, G. T., Biochemistry, in press.

  14. Saier, M. H. Jr., Schmidt, M. R. & Lin, P., 1980. J. Biol. Chem. 255: 8579–8584.

    Google Scholar 

  15. Kundig, W. & Roseman, S., 1971. J. Biol. Chem. 246: 1393–1406.

    Google Scholar 

  16. Hoving, H., Koning, J. & Robillard, G. T., Biochemistry (in press).

  17. Mildvan, A. S. & Cohn, M., 1966. J. Biol. Chem. 241: 1178–1193.

    Google Scholar 

  18. Robillard, G. T., Roossien, F. & Dooijewaard, G., 1978. Federation Proc. 37: 1458.

    Google Scholar 

  19. Saier, M. H., Feucht, B. U. & Roseman, S., 1971. J. Biol. Chem. 246: 7819–7821.

    Google Scholar 

  20. Hanson, T. E. & Anderson, R. L., 1968. Proc. Natl. Acad. Sci. U.S.A. 61: 269–276.

    Google Scholar 

  21. Walter Jr., R. W. & Anderson, R. L., 1973. Biochem. Biophys. Res. Comm. 52: 93–97.

    Google Scholar 

  22. Saier, M. H., Jr., Simoni, R. D. & Roseman, S., 1976. J. Biol. Chem. 251: 6584–6597.

    Google Scholar 

  23. Waygood, B., 1980, Can. J. Biochem. 58: 1144–1146.

    Google Scholar 

  24. Anderson, B. N., Weigel, N., Kundig, W. & Roseman, S., 1971. J. Biol. Chem. 246: 7023–7033.

    Google Scholar 

  25. Simoni, R. D., Nakazawa, T., Hays, J. B. & Roseman, S., 1973. J. Biol. Chem. 248: 932–940.

    Google Scholar 

  26. Jaffor Ullak, A. H. & Cirillo, V. P., 1976. J. Bacteriol. 127: 1298–1306.

    Google Scholar 

  27. Dooijewaard, G., Roossien, F. F. & Robillard, G. T., 1979, Biochemistry 18: 2990–2995.

    Google Scholar 

  28. Roossien, F. F., Dooijewaard, G. & Robillard, G. T., 1979, Biochemistry 18: 5793–5797.

    Google Scholar 

  29. Gassner, M., Stenlik, D., Schrecker, O., Hengstenberg, W., Maurer, W. & Rüterjans, H., 1977. Eur. J. Biochem. 75: 287–296.

    Google Scholar 

  30. Kalbitzer, H. R. & Rosch, P., 1981. Org. Mag. Res. (in press).

  31. Hengstenberg, W., 1977. Curr. Top. Microbiol. Immunol. 77: 97–126.

    Google Scholar 

  32. Dooijewaard, G., Roossien, F. F. & Robillard, G. T., 1979. Biochemistry 18: 2996–3001.

    Google Scholar 

  33. Maurer, W., Rüterjans, H., Schrecker, O., Hengstenberg, W., Gassner, M. & Stehlik, D., 1977. Eur. J. Biochem. 75: 297–301.

    Google Scholar 

  34. Rösch, P., Kalbitzer, H. R., Schmidt-Aderjan, V. & Hengstenberg, W., 1981. Biochemistry 20: 1599–1605.

    Google Scholar 

  35. Kalbitzer, H. R., Demscher, J., Hengstenberg, W. & Rösch, P., 1981, Biochemistry 20: 6178–6185.

    Google Scholar 

  36. Simoni, R. D., Smith, M. F. & Roseman, S., 1968. Biochem. Biophys. Res. Commun. 31: 804.

    Google Scholar 

  37. Hays, J. B., Simoni, R. D. & Roseman, S., 1973. J. Biol. Chem. 248: 941–956.

    Google Scholar 

  38. Simoni, R. D., Hays, J. B., Nakazawa, T. & Roseman, S., 1973. J. Biol. Chem. 248: 957–965.

    Google Scholar 

  39. Kundig, W., 1974. J. Supramol. Str. 2: 695–714.

    Google Scholar 

  40. Scholte, B. J. & Postma, P. W., J. Bacteriol. 1981. (in press).

  41. Magasanik, B., 1961. Cold Spring Harb. Symp. Quart. Biol. 26: 193.

    Google Scholar 

  42. Ullmann, A. & Monod, J., 1968. FEBS Lett. 2: 57–61.

    Google Scholar 

  43. Makman, R. S. & Sutherland, E. W., 1965. J. Biol. Chem. 240: 1309–1314.

    Google Scholar 

  44. Perlman, R. & Pastan, I., 1968. Biochem. Biophys. Res. Commun. 30: 656.

    Google Scholar 

  45. Pastan, I. & Perlman, R., 1970. Science 169: 339–344.

    CAS  PubMed  Google Scholar 

  46. Peterkofsky, A. & Gazdar, C., 1975. Proc. Natl. Acad. Sci. U.S.A. 72: 2920–2924.

    Google Scholar 

  47. Peterkofsky, A. & Gazdar, C., 1974. Proc. Nat. Acad. Sci. U.S.A. 71: 2324–2328.

    Google Scholar 

  48. Harwood, J. B. & Peterkofsky, A., 1975. J. Biol. Chem. 250: 4656–4662.

    Google Scholar 

  49. Peterkofsky, A., Gonzalez, J. E. & Gazdar, C., 1978. Arc. Biochem. Biophys. 188: 47–55.

    Google Scholar 

  50. Saier, M. H., Jr., Simoni, R. D. & Roseman, S., 1976. J. Biol. Chem. 251: 6584–6597.

    Google Scholar 

  51. Castro, L., Feucht, B. U., Morse, L. & Saier, M. H. Jr., 1976. J. Biol. Chem. 251: 5522–5527.

    Google Scholar 

  52. Saier, M. H. Jr. & Roseman, S., 1976. J. Biol. Chem. 251: 6598–6605.

    Google Scholar 

  53. Saier, M. H. Jr. & Feutch, B. U., 1975. J. Biol. Chem. 250: 7078–7080.

    Google Scholar 

  54. Peterkofsky, A., Harwood, J. P., Gazdar, C., 1975. J. Cyclic Nucleotide Res. 1: 11.

    Google Scholar 

  55. Gonzalez, J. E. & Peterkofsky, A., 1977. J. Supramolec. Struct. 6: 495–502.

    Google Scholar 

  56. Harwood, J. P., Gazdar, C., Prasad, C., Peterkofsky, A., Curtis, S. J. & Epstein, W., 1976. J. Biol. Chem. 251: 2462–2468.

    Google Scholar 

  57. Saier, M. H. Jr., Feucht, B. U. & Hofstadter, L. J., 1976. J. Biol. Chem. 254: 883–892.

    Google Scholar 

  58. Saier, M. H. Jr., Strand, H., Massman, L. S., Judice, J. J., Newman, M. J. & Feucht, B., 1978. J. Bacteriol. 133: 1358–1367.

    Google Scholar 

  59. Dills, S. S., Schmidt, M. R. & Saier, M. H., Jr., 1981. J. Bacteriol. (in press).

  60. Kundig, W. & Roseman, S., 1971. J. Biol. Chem. 246: 1407–1418.

    Google Scholar 

  61. Jacobson, G. R., Lee, C. A. & Saier, M. H. Jr., 1979. J. Biol. Chem. 254: 249–252.

    Google Scholar 

  62. Saier, M. H. Jr., Cox, D. F. & Maczydlowski, E. G., 1977. J. Biol. Chem. 252: 8908–8916.

    Google Scholar 

  63. Saier, M. H. Jr., Feucht, B. U. & Mora, W. K., 1977. J. Biol. Chem. 252: 8899–8907.

    Google Scholar 

  64. Leonard, J. E. & Saier, M. H. Jr., personal communication.

  65. Korte, T. & Hengstenberg, W., 1971. Eur. J. Biochem. 23: 295–302.

    Google Scholar 

  66. Schäfer, A., Schrecker, O. & Hengstenberg, W., 1981. Eur. J. Biochem. 113, 289–294.

    Google Scholar 

  67. Rephaeli, A. W. & Saier, M. H. Jr., 1980. J. Biol. Chem. 255: 8585–8591.

    Google Scholar 

  68. Rephaeli, A. W. & Saier, M. H. Jr., 1978. J. Biol. Chem. 253: 7595–7597.

    Google Scholar 

  69. Misset, O. & Robillard, G. T., 1982. Biochemistry (in press).

  70. Hüdig, H. & Hengstenberg, W., 1980. FEBS Lett. 114: 103–106.

    Google Scholar 

  71. Perret, J. & Gay, P., 1979. Eur. J. Biochem. 102: 237–246.

    Google Scholar 

  72. Marquet, M., Cragnou, M. C. & Dedonder, R., 1978. Biochemic 60: 1283–1287.

    Google Scholar 

  73. Tanaka, S., Fraenkel, D. G., Lin, E. C. C., 1967. Biochem. Biophys. Res. Comm. 27: 63–67.

    Google Scholar 

  74. Tanaka, S. & Lin, E. C. C., 1967. Proc. Natl. Acad. Sci. 57: 913–919.

    Google Scholar 

  75. Simoni, R. D., Levinthal, M., Kundig, F., Kundig, W., Anderson, B., Hartman, P. & Roseman, S., 1967. Proc. Natl. Acad. Sci. U.S.A. 58: 1963–1970.

    Google Scholar 

  76. Saier, M. H. Jr., Simoni, R. D. & Roseman, S., 1970. J. Biol. Chem. 245: 5870.

    Google Scholar 

  77. Simoni, R. D. & Roseman, S., 1973. J. Biol. Chem. 248: 966–976.

    Google Scholar 

  78. Englesberg, E., Watson, J. A. & Hoffee, P. A., 1961. Cold Spring Harbor Symp. Quant. Biol. 241–276.

  79. Hoffee, P.A., Englesberg, E. & Lamy, F., 1964. Biochim. Biophys. Acta. 79: 337–350.

    Google Scholar 

  80. Gachelin, G., 1970. Eur. J. Biochem. 16: 342–357.

    Google Scholar 

  81. Kelker, N., Simkins, R. & Anderson, R., 1972. J. Biol. Chem. 247: 1479–1483.

    Google Scholar 

  82. Postma, P. W. & Stock, J. B., 1980. J. Bacteriol. 141: 476–484.

    Google Scholar 

  83. Postma, P. W., 1981. J. Bacteriol 147: 382–389.

    Google Scholar 

  84. Hoffee, P. A. & Englesberg, E., 1962. Proc. Nat. Acad. Sci. U.S.A. 48: 1759–1965.

    Google Scholar 

  85. Hagikira, H., Wilton, T. H. & Lin, E. C. C., 1963. Biochim. Biophys. Acta 78: 505–515.

    Google Scholar 

  86. Hernandez-Asensio, M., Ramirez, J. M. & del Campo, F. F., 1975. Arch. Microbiol. 103: 155–162.

    Google Scholar 

  87. del Campo, F. F., Hernandez-Asensio, M. & Ramirez, J. M., 1975. Biochem. Biophys. Res. Common. 63: 1099–1105.

    Google Scholar 

  88. Singh, A. F. & Bragg, P. D., 1976. FEBS Lett. 64: 169–172.

    Google Scholar 

  89. Reider, E., Wagner, E. F. & Schweiger, M., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 5529–5533.

    Google Scholar 

  90. Robillard, G. T. & Konings, W. N., 1981. Biochemistry 20: 5025–5032.

    Google Scholar 

  91. Haguenauer-Tsapis, R. & Kepes, A., 1973. Biochem. Biophys. Res. Commun. 54: 1335–1341.

    Google Scholar 

  92. Haguenauer-Tsapis, R. & Kepes, A., 1977. Biochim. Biophys. Acta 465: 118–130.

    Google Scholar 

  93. Stocken, L. A. & Thompson, R. H. S., 1946. Biochem. J. 40: 529–535.

    Google Scholar 

  94. Webb, J. L., 1964. In: Enzymes and Metabolic Inhibitors 3: 599, Academic Press, New York.

    Google Scholar 

  95. Kaback, H. R., J. Biol. Chem. 243: 3711–3724 (1968).

    Google Scholar 

  96. Saier, M. H. Jr. & Staley, J. T., 1977. J. Bacteriol. 131: 716–718.

    Google Scholar 

  97. Scholte, B. J. & Postma, P. W., 1981. J. Bacteriol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robillard, G.T. The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems. Mol Cell Biochem 46, 3–24 (1982). https://doi.org/10.1007/BF00215577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215577

Keywords

Navigation