Skip to main content
Log in

Catecholamines in the coelenterate Renilla köllikeri

Uptake and radioautographic localization

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The characteristics of uptake of 3H-noradrenaline (3H-NA) and 3H-adrenaline (3H-A) in the tissues of the sea pansy, Renilla köllikeri, were studied by in vivo incubations. Lineweaver-Burk plots indicated two components of catecholamine accumulation, one representing a high-affinity uptake with an apparent K m of 4.91×10-7 M (3H-NA) or 4.39×10-7 M (3H-A), and the other a low affinity process with an apparent Km of 5.52×10-5 M (3H-NA) or 1.49×10-5 M (3H-A). The high-affinity uptake of both tracers was strongly inhibited at low temperature and in a calcium-free medium, thus suggesting the involvement of a carrier-mediated transport mechanism, but was largely insensitive to sodium omission and ouabain. Accumulations of 3H-NA, but not 3H-A, were highly desipramine-sensitive.

Light-microscopic radioautographic studies demonstrated the presence of cells reactive to both 3H-NA and 3H-A in the ectoderm, mesoglea and endoderm. Extraneuronal accumulations of 3H-NA and 3H-A were prominent in some ectodermal cells, in amoebocytes and spicule cells. Reactive neuronal processes were tentatively identified throughout the mesoglea and over all muscle layers on the basis of several morphological criteria. 3H-A, but not 3H-NA label, was more intense over the presumed photocytic zone and circular muscle than elsewhere. These and other observations support a neurotransmitter role for adrenaline (and probably noradrenaline) in control of luminescence and modulation of slow rachidial contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anctil M, Brunel S, Descarries L (1981) Catecholamines and 5-hydroxytryptamine in photophores of Porichthys notatus. Radioenzymatic detection and radioautographic localization. Cell Tissue Res 219:557–566

    Google Scholar 

  • Anctil M, Boulay D, LaRivière L (1982) Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri. J Exp Zool 223:11–24

    Google Scholar 

  • Anctil M, Descarries L, Watkins KC (1984) Distribution of 3H noradrenaline and 3H-serotonin in photophores of Porichthys notatus. An electron microscope radioautographic analysis. Cell Tissue Res 235:129–136

    Google Scholar 

  • Anderson PAV (1976) An electrophysiological analysis of behavioural integration in colonial anthozoans. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 609–618

    Google Scholar 

  • Anderson PAV, Case JF (1975) Electrical activity associated with luminescence and other colonial behavior in the pennatulid Renilla köllikeri. Biol Bull 149:80–95

    Google Scholar 

  • Bilbaut A (1975a) Etude de la bioluminescence chez l'octocoralliaire Veretillum cynomorium. Les réponses lumineuses des autozooides isolés de la colonie. Arch Zool Exp Gén 116:27–42

    Google Scholar 

  • Bilbaut A (1975b) Etude de la bioluminescence chez l'octocoralliaire Veretillum cynomorium. Les réponses lumineuses de la colonie et les réactions motrices associées. Arch Zool Exp Gén 116:321–341

    Google Scholar 

  • Bode H, David CN (1978) Regulation of a multipotent stem cell, the interstitial cell of Hydra. Prog Biophys Mol Biol 33:189–206

    Google Scholar 

  • Buck J (1973) Bioluminescent behavior in Renilla. I. Colonial responses. Biol Bull 144:19–42

    Google Scholar 

  • Buisson B (1970) Les supports morphologiques de l'intégration dans la colonie de Veretillum cynomorium Pall (Cnidaria, Pennatularia). Z Morphol Oekol Tiere 68:1–36

    Google Scholar 

  • Burrell DE, Stefano GB (1981) Analysis of monoamine accumulations in the neuronal tissues of Mytilus edulis (Bivalvia). I. Ganglionic variations. Comp Biochem Physiol 70C:71–76

    Google Scholar 

  • Carlberg M (1983) Evidence of DOPA in the nerves of sea anemones. J Neural Transm 57:75–84

    Google Scholar 

  • Carlyle RF (1969) The occurrence of catecholamines in the sea anemone Actinia equina. Br J Pharmacol 36:182P

  • Charbonneau H, Cormier MJ (1979) Ca2+ -induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J Biol Chem 254:769–780

    Google Scholar 

  • Cormier MJ (1978) Comparative biochemistry of animal systems. In: Herring PJ (ed) Bioluminescence in action. Academic Press, London New York, pp 75–108

    Google Scholar 

  • Dahl E, Falck B, von Mecklenburg C, Myhrberg H (1963) An adrenergic nervous system in sea anemones. QJ Micr Sci 104:531–534

    Google Scholar 

  • Descarries L (1975) High resolution radioautography of noradrenergic axon terminals in the neocortex. In: Ali MA (ed) Vison in fishes. Plenum Press, New York, pp 211–232

    Google Scholar 

  • Dickenson P (1978) Conduction systems controlling expansion contraction behavior in the sea pen Ptilosarcus gurneyi. Mar Behav Physiol 5:163–183

    Google Scholar 

  • Dietrich HF, Fontaine AR (1975) A decalcification method for ultrastructure of echinoderm tissues. Stain Technol 50:351–354

    Google Scholar 

  • DiPolo R, Beaugé L (1983) The calcium pump and sodium-calcium exchange in squid axons. Ann Rev Physiol 45:313–324

    Google Scholar 

  • Gillis CN (1976) Extraneuronal transport of noradrenaline in the lung. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 281–297

    Google Scholar 

  • Godfraind-De Becker A, Godfraind T (1980) Calcium transport system: a comparative study in different cells. Int Rev Cytol 67:141–170

    Google Scholar 

  • Hendley ED (1976) The mechanism of extraneuronal transport of catecholamines in the central nervous system. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 313–324

    Google Scholar 

  • Iversen LL (1975) Uptake processes for biogenic amines. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 3. Plenum Press, New York, pp 381–430

    Google Scholar 

  • Jones HP, Matthews JC, Cormier MJ (1979) Isolation and characterization of Ca2+-dependent modulator protein from the marine invertebrate Renilla reniformis. Biochemistry 18:55–60

    Google Scholar 

  • Lyke EB (1965) The histology of the sea pansies, Renilla reniformis (Pallas) and Renilla köllikeri (Pfeffer) with a note on the fine structure of the latter species. PhD Thesis, University of Wisconsin

  • Martin SM, Spencer AN (1983) Neurotransmitters in coelenterates. Comp Biochem Physiol 74C:1–14

    Google Scholar 

  • McFarlane ID (1973) Spontaneous contractions and nerve net activity in the sea anemone Calliactis parasitica. Mar Behav Physiol 2:97–113

    Google Scholar 

  • McFarlane ID (1974) Excitatory and inhibitory control of inherent contractions in the sea anemone Calliactis parasitica. J Exp Biol 60:397–422

    Google Scholar 

  • Morin JG (1974) Coelenterate bioluminescence. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology. Reviews and new perspectives. Academic Press, New York, pp 397–438

    Google Scholar 

  • Nicol JAC (1955a) Observations on luminescence in Renilla (Pennatulacea). J Exp Biol 32:299–320

    Google Scholar 

  • Nicol JAC (1955b) Nervous regulation of luminescence in the sea pansy Renilla köllikeri. J Exp Biol 32:619–635

    Google Scholar 

  • Osborne NN, Hiripi L, Neuhoff V (1975) The in vitro uptake of biogenic amines by snail (Helix pomatia) nervous tissue. Biochem Pharmacol 24:2141–2148

    Google Scholar 

  • Parker GH (1919) The organization of Renilla. J Exp Zool 27:499–507

    Google Scholar 

  • Parker GH (1920a) Activities of colonial animals. I. Circulation of water in Renilla. J Exp Zool 31:343–365

    Google Scholar 

  • Parker GH (1920b) Activities of colonial animals. II. Neuromuscular movements and phosphorescence in Renilla. J Exp Zool 31:475–515

    Google Scholar 

  • Parker GH (1920c) The phosphorescence in Renilla. Proc Am Phil Soc 59:171–175

    Google Scholar 

  • Paton DM (1976) Characteristics of uptake of noradrenaline by adrenergic neurons. In: Paton DM (ed) The mechanism of neuronal and extra neuronal transport of catecholamines. Raven Press, New York, pp 49–66

    Google Scholar 

  • Satterlie RA, Case JF (1978) Neurobiology of the gorgonian coelenterates, Muricea californica and Lophogorgia chilensis. II. Morphology. Cell Tissue Res 187:379–396

    Google Scholar 

  • Satterlie RA, Case JF (1979) Neurobiology of the gorgonian coelenterates, Muricea californca and Lophogorgia chilensis. I. Behavioural physiology. J Exp Biol 79:191–204

    Google Scholar 

  • Satterlie RA, Case JF (1980) Neurobiology of the stoloniferan octocoral Clavularia sp. J Exp Zool 212:87–99

    Google Scholar 

  • Satterlie RA, Anderson PAV, Case JF (1976) Morphology and electrophysiology of the through-conducting systems in pennatulid coelenterates. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 619–627

    Google Scholar 

  • Satterlie RA, Anderson PAV, Case JF (1980) Colonial coordination in anthozoans: Pennatulacea. Mar Behav Physiol 7:25–46

    Google Scholar 

  • Shelton GAB, McFarlane ID (1976) Slow conduction in solitary and colonial anthozoa. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York, pp 599–607

    Google Scholar 

  • Vincenzi FF, Hinds TR (1980) Calmodulin and plasma membrane calcium transport. In: Cheung WY (ed) Calcium and cell function, vol 1. Academic Press, New York, pp 127–165

    Google Scholar 

  • Wilson EB (1883) The development of Renilla. Phil Trans R Soc Lond Biol 174:723–815

    Google Scholar 

  • Wood JG, Lentz TL (1964) Histochemical localization of amines in Hydra and in the sea anemone. Nature 201:88–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Natural Sciences and Engineering Research Council of Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anctil, M., Germain, G. & LaRivière, L. Catecholamines in the coelenterate Renilla köllikeri . Cell Tissue Res. 238, 69–80 (1984). https://doi.org/10.1007/BF00215146

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215146

Key words

Navigation