Skip to main content
Log in

Fractal analysis of turbulent premixed flame surface

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The fractal-like character of the laminar flamelet surface in turbulent premixed combustion of lean methane/air mixtures was studied by using the laser tomography technique to visualize the instantaneous flame surface in the two-dimensional section cut by the laser sheet. The fractal analysis of the surface revealed that the surface actually exhibits a self-similarity behavior in a narrow range of scale, and the value of fractal dimension can be defined. The inner cutoff scale was the laminar flame thickness, while the outer cutoff scale was the flame size. The fractal dimension was found to depend on the orientation of the section, and to increase towards downstream. It is suggested that the observed fractal-like character is not directly connected to approach flow turbulence, but should represent certain aspects of the flamelet itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyer, L. 1980: Laser tomographic method for flame front movement studies. Combust. Flame 39, 321–323

    Google Scholar 

  • Boyer, L.; Clavin, P.; Sabathier, F. 1981: Dynamic behavior of a premixed turbulent flame front. In: Proc. 18th Int. Symp. Combust. pp. 1041–1049. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Bray, K. N. C. 1987: Methods of including realistic chemical reaction mechanisms in turbulent combustion models. In: Complex chemical reaction systems (eds. Warnatz, J.; Jager, W.), pp. 356–375. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Chen, L. D.; Roquemore, W. M. 1986: Visualization of jet flames. Combust. Flame 66, 81–86

    Google Scholar 

  • Dumont, J. P.; Borghi, R. 1986: A qualitative study by Laser tomography of the structure of turbulent flames. Combust. Sci. Technol. 48, 107–128

    Google Scholar 

  • Durox, D.; Prud'Homme, R. 1987: Polyhedral flames of propane at low pressure. Combust. Flame 70, 243–249

    Google Scholar 

  • Gouldin, F. C. 1987: An application of fractals to modeling premixed turbulent flames. Combust. Flame 68, 249–266

    Google Scholar 

  • Gouldin, F C.; Hilton, S. M.; Lamb, T. 1989: Experimental evaluation of the fractal geometry of flamelets. In: Proc. 22nd Int. Symp. Combust. pp. 541–550. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Hinze, J. 1959: Turbulence. pp. 185–186, 210. New York: McGraw-Hill

    Google Scholar 

  • Klimov, A. M. 1983: Premixed turbulent flames — interplay of hydrodynamic and chemical phenomena. In: Flames, lasers, and reactive systems (eds. Bowen, J. R.; Manson, N.; Oppenheim, A. K.; Soloukhin, R. I.), pp. 133–146. New York: AIAA

    Google Scholar 

  • Mandelbrot, B. B. 1975: On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72, 401–416

    Google Scholar 

  • Mandelbrot, B. B. 1983: The fractal geometry of nature. New York: Freeman

    Google Scholar 

  • Murayama, M. 1989: Fractal analysis of turbulent flame configuration. Ph.D. Thesis, Department of Aeronautics, University of Tokyo

  • Murayama, M.; Takeno, T. 1989: Fractal-like character of flamelets in turbulent premixed combustion. In: Proc. 22nd Int. Symp. Combust. pp. 551–559. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Peters, N. 1988: Laminar flamelet concepts in turbulent combustion. In: Proc. 22nd Int. Symp. Combust. pp. 1231–1250. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Prasad, R. R.; Sreenivasan, K. R. 1990: The measurement and interpretation of fractal dimensions of the scalar interface in turbulent flows. Phys. Fluids (in press)

  • Sabathier, F.; Boyer, L.; Clavin, P. 1981: Experimental study of a weak turbulent premixed flame. In: Combustion in reactive systems (eds. Bowen, J. R.; Manson, N.; Oppenheim, A. K.; Soloukhin, R. I.), pp. 246–258. New York: AIAA

    Google Scholar 

  • Sreenivasan, K. R.; Meneveau, C. 1986: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386

    Google Scholar 

  • Sreenivasan, K. R.; Ramshankar, R.; Meneveau, C. 1989: Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. London, Ser. A 421, 79–108

    Google Scholar 

  • Strahle, W. C.; Jagoda, J. I. 1989: Fractal geometry applications in turbulent combustion data analysis. In: Proc. 22nd Int. Symp. Combust. pp. 561–568. Pittsburgh: The Combustion Institute

    Google Scholar 

  • Townsend, A. A. 1976: The structure of turbulent shear flow. 2nd edn., p. 66. Cambridge: Cambridge University Press

    Google Scholar 

  • Tsatsaronis, G. 1978: Prediction of propagating laminar flames. Combust. Flame 33, 217–239

    Google Scholar 

  • Williams, F A. 1985: Combustion theory. 2nd edn., p. 414. Menlo Park/CA: The Benjamin/Cummings

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeno, T., Murayama, M. & Tanida, Y. Fractal analysis of turbulent premixed flame surface. Experiments in Fluids 10, 61–70 (1990). https://doi.org/10.1007/BF00215012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215012

Keywords

Navigation