Skip to main content
Log in

The hypothalamo-hypophysial system of the wild carp, Cyprinus carpio L.

II. Structure and ultrastructure of the anterior neurohypophysis

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The anterior neurohypophysis (ANH)-pars distalis complex of the carp, Cyprinus carpio L., has been analysed by combined light, fluorescence and electron microscopy. Only few “Gomori-positive” fibres are seen in the caudal and especially in the rostral part of the ANH, where the false “Gomori-positive” fibres predominate. Monoamine fluorescence shows the same distribution although it is extremely weak and only slightly increases after nialamide treatment. Four types of neurosecretory fibres and their terminals have been recognized in each part of the ANH. The sizes of neurosecretory granules contained in peptidergic A1- and A2-type fibres terminating in the rostral (120–220 nm and 60–140 nm) and caudal (120–160 nm and 90–120 nm) parts of the ANH differ. Monoaminergic B and B1-type fibres have rounded (60–100 nm) or elongated (40×80 nm) granules, respectively. Some neurosecretory terminals (NST) of different types make contact with the capillaries located within the ANH roots as well as at the border between the latter and the pars distalis. Direct synaptoid axo-glandular contacts are very limited, and most neurosecretory fibres end close to continuous connective tissue septa separating the nervous tissue from the glandular cells of the rostral and caudal pars distalis. The question of the mode of the neuro-glandular relations in the complex ANH-pars distalis of teleosts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham M (1971) The ultrastructure of the cell types and of the neurosecretory innervation in the pituitary of Mugil cephalus L. from fresh water, the sea, and a hypersaline lagoon. I. The rostral pars distalis. Gen Comp Endocrinol 17:334–350

    Google Scholar 

  • Abraham M (1974) The ultrastructure of the cell types and of the neurosecretory innervation in the pituitary of Mugil cephalus L. from fresh water, the sea, and a hypersaline lagoon. II. The proximal pars distalis. Gen Comp Endocrinol 24:121–132

    PubMed  Google Scholar 

  • Abraham M, Kieselstein M, Hilge V, Lison S (1982) Extravascular circulation in the pituitary of Mugil cephalus (Teleostei). Cell Tissue Res 225:567–579

    PubMed  Google Scholar 

  • Bage G, Ekengren B, Fernholm B, Fridberg G (1974a) The pituitary gland of the roach Leuciscus rutilus. I. The rostral pars distalis and its innervation. Acta Zool 55:25–45

    Google Scholar 

  • Bage G, Ekengren B, Fernholm B, Fridberg G (1974b) The pituitary gland of the roach Leuciscus rutilus. II. The proximal pars distalis and its innervation. Acta Zool 55:191–204

    Google Scholar 

  • Ball JN (1981) Hypothalamic control of the pars distalis in fishes, amphibians, and reptiles. Gen Comp Endocrinol 44:135–170

    PubMed  Google Scholar 

  • Ball JN, Baker BI (1969) The pituitary gland: Anatomy and histophysiology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 2. Academic Press, New York, pp 1–110

    Google Scholar 

  • Batten TFC, Ball JN (1977) Ultrastructure of the neurohypophysis of the teleost Poecilia latipinna in relation to neural control of the adenohypophysial cells. Cell Tissue Res 185:409–433

    PubMed  Google Scholar 

  • Batten TFC, Ingleton PM, Ball JN (1979) Ultrastructural and formaldehyde-fluorescence studies on the hypothalamus of Poecilia latipinna (Teleostei, Cyprinodontiformes). Gen Comp Endocrinol 39:87–109

    PubMed  Google Scholar 

  • Belenky MA (1978) Morphofunctional evolution of the neurohemal regions of the hypothalamo-hypophysial system. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 44–51

    Google Scholar 

  • Belenky MA (1981) Functional cytomorphology of the neurohypophysis and foundations of its development in phylogenesis and ontogenesis of vertebrates. Dr. Sc. Thesis, Leningrad

  • Belenky MA, Chetverukhin VK, Polenov AL (1979) Quantitative radioautographic light and electron microscopic analysis of the localization of monoamines in the median eminence of the rat. II. Serotonin. Cell Tissue Res 204:305–315

    PubMed  Google Scholar 

  • Chetverukhin VK, Belenky MA, Polenov AL (1985) The hypothalamo-hypophysial system of the frog Rana temporaria. III. Ultrastructure of the median eminence of the adult frog, with special reference to distribution of serotoninergic neurosecretory terminals. Cell Tissue Res (in press)

  • Ekengren B, Lindahl K, Fridberg G (1978) Immunocytology and innervation of the gonadotropic cells in the teleost fish Rutilus rutilus. Acta Zool 59:125–133

    Google Scholar 

  • Follénius E (1970) La localisation fine des terminaisons nerveuses fixant la noradrénaline H3 dans les différents lobes de l'adenohypophyse de l'Epinoche (Gasterosteus aculeatus L.) In: Bargmann W, Scharrer B (eds) Aspects of neuroendocrinology. Springer, Berlin Heidelberg New York, pp 232–244

    Google Scholar 

  • Fremberg M, van Veen Th, Hartwig HG (1977) Formaldehydeinduced fluorescence in the telencephalon and diencephalon of the eel (Anguilla anguilla L.). A fluorescence-microscopic and microspectrofluorometric investigation with special reference to the innervation of the pituitaty. Cell Tissue Res 176:1–22

    PubMed  Google Scholar 

  • Fryer JN, Maler L (1981) Hypophysiotropic neurons in the goldfish hypothalamus demonstrated by retrograde transport of horse-radish peroxidase. Cell Tissue Res 218:93–102

    PubMed  Google Scholar 

  • Goos HJTh, Murathanoglu O (1977) Localization of gonadotropin releasing hormone (GRH) in the forebrain and neurohypophysis of the trout (Salmo gairdneri). Cell Tissue Res 181:163–188

    PubMed  Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1977) Immunocytochemical localization of vasotocin and isotocin in the preopticohypophysial neurosecretory system of teleosts. Gen Comp Endocrinol 32:371–375

    PubMed  Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. Cambridge Univ. Press, London

    Google Scholar 

  • Jasiński A (1974) Fine structure of the anterior neurohypophysis of the pond-loach, Misgurnus fossilis L., with reference to the neurosecretory innervation of intrinsic cells of the pars distalis. Acta Anat 87:193–208

    PubMed  Google Scholar 

  • Kaul S, Vollrath L (1974a) The goldfish pituitary I. Cytology. Cell Tissue Res 154:211–230

    PubMed  Google Scholar 

  • Kaul S, Vollrath L (1974b) The goldfish pituitary. II. Innervation. Cell Tissue Res 154:231–249

    PubMed  Google Scholar 

  • Knowles F, Vollrath L (1966) Neurosecretory innervation of the pituitary of the eels Anguilla and Conger. Phil Trans, Ser B 250:311–342

    Google Scholar 

  • Konstantinova MS (1976) Distribution of monoamines in the hypothalamus and hypophysis of the carp, Cyprinus carpio L. J Evol Biochem Physiol (Leningrad) 12:192–193

    Google Scholar 

  • Kornienko GG, Belenky MA (1976) Structure of the complexes neurohypophysis-metaadenohypophysis and neurohypophysismesoadenohypophysis of the female wild carp Cyprinus carpio L. with special reference to changes during spawning. In: Polenov AL, Belenky MA (eds) Evolutionary aspects of neuroendocrinology. Leningrad, p 87

  • Leatherland JF (1970) Structure and ultrastructure of the neurohypophysis of the viviparous teleost, Cymatogaster aggregata Gibbons. Can J Zool 48:1087–1091

    Google Scholar 

  • Leatherland JF (1972) Histophysiology and innervation of the pituitary gland of the goldfish, Carassius auratus L.: a light and electron microscope investigation. Can J Zool 50:835–844

    Google Scholar 

  • Peter RE, Nagahama Y (1976) A light and electron microscopic study of the structure of the nucleus preopticus and nucleus lateralis tuberis of the goldfish, Carassius auratus. Can J Zool 54:1423–1437

    PubMed  Google Scholar 

  • Pluzhnikov LT (1978) Functional morphology of the ultrastructures of hypothalamic peptidergic neurosecretory cells of Cyprinus carpio L. in different periods of their life cycle. Thesis, Leningrad

  • Polenov AL (1959) The preoptic-hypophysial Gomori-positive neurosecretory system of the sazan and carp. Dokl Akad Nauk SSSR 129:1413–1416

    Google Scholar 

  • Polenov AL (1968) Hypothalamic neurosecretion. “Nauka”, Leningrad

    Google Scholar 

  • Polenov AL (1970) Morphofunctional principles of neurosecretory (peptidergic) and adrenergic regulatory mechanisms of the hypothalamus. In: Chernigovsky VN (ed) Proc XIth All-Union Congress IP Pavlov Physiological Society. Abstracts, vol. 1. “Nauka”, Leningrad, pp 311–315

    Google Scholar 

  • Polenov AL (1978) Evolutionary basis of the general principle of neuroendocrine regulation. Interaction of peptide and monoamine neurohormones in a dual control mechanism. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Springer, Berlin Heidelberg New York, pp 15–30

    Google Scholar 

  • Polenov AL (1980) Hypothalamic neurohormonal mechanisms of adaptation. In: Stark E, Makara GB, Halász B, Rappay Gy (eds) Adv Physiol Sci, vol 14. Endocrinology, Neuroendocrinology, Neuropeptides-II, Pergamon Press-Akadémiai Kiadó, Budapest. pp 1–22

    Google Scholar 

  • Polenov AL, Belenky MA (1973) Some regularities of the development of neurohemal parts of the hypothalamo-hypophysial neurosecretory system in ontogenesis and phylogenesis of vertebrates. J Evol Biochem Physiol (Leningrad) 9:355–363

    Google Scholar 

  • Polenov AL, Belenky MA, Konstantinova MS (1981) Morphological bases of the functional interaction of peptidergic and monoaminergic structures of the hypothalamo-hypophysial complex. In: Farner DS, Lederis K (eds) Neurosecretion. Molecules, cells, systems. Plenum Press, New York London, pp 105–116

    Google Scholar 

  • Polenov AL, Belenky MA, Kornienko GG, Konstantinova MS (1984) The hypothalamo-hypophysial system of the wild carp, Cyprinus carpio L. I. Structure and ultrastructure of the posterior neurohypophysis. Cell Tissue Res 237:139–147

    PubMed  Google Scholar 

  • Terlou M, Ekengren B (1979) Nucleus praeopticus and nucleus lateralis tuberis of Salmo salar and Salmo gairdneri: structure and relationship to the hypophysis. Cell Tissue Res 197:1–21

    PubMed  Google Scholar 

  • Terlou M, Ekengren B, Hiemstra K (1978) Localization of monoamines in the forebrain of two salmoid species, with special reference to the hypothalamo-hypophysial system. Cell Tissue Res 190:417–434

    PubMed  Google Scholar 

  • Tsuneki K (1975) Ultrastructure of the neurohypophysis and adenohypophysis of the teleost, Chasmichthys dolichognatus. Zbl Vet Med 4:307–322

    Google Scholar 

  • Zambrano D (1970) The nucleus lateralis tuberis system of the gobiid fish Gillichthys mirabilis. I. Ultrastructural and histochemical characterization of the nucleus. Z Zellforsch 110:9–26

    PubMed  Google Scholar 

  • Zambrano D, Nishioka RS, Bern HA (1972) The innervation of the pituitary gland of teleost fishes. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. I. Median eminence: Structure and function. S Karger, Basel München Paris New York, pp 50–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belenky, M.A., Polenov, A.L., Kornienko, G.G. et al. The hypothalamo-hypophysial system of the wild carp, Cyprinus carpio L.. Cell Tissue Res. 239, 211–218 (1985). https://doi.org/10.1007/BF00214921

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214921

Key words

Navigation