Cadmium in beavers translocated from the Elbe river to the rhine/meuse estuary, and the possible effect on population growth rate

  • B. A. Nolet
  • V. A. A. Dijkstra
  • D. Heidecke


Beavers (Castor fiber) from the Middle Elbe region were re-introduced in the Biesbosch, The Netherlands, an estuary contaminated with cadmium (Cd) by the rivers Rhine and Meuse. The Middle Elbe region was also polluted with Cd, but the beavers released in the Biesbosch originated from two relatively clean habitats within this region. The Biesbosch population grew slower than other released beaver populations in Europe, and it was hypothesized that Cd intoxication was responsible for this. The beavers fed primarily on the bark and leaves of willow and poplar trees, which contained great concentrations of Cd. The average Cd concentration in the food (6.9 μg/gdry) was above the maximum tolerable concentration for large domestic herbivores. The Cd concentrations of the kidneys and hair of the beavers were correlated with those in the bark of the trees. The Cd concentration in the hair increased threefold after the release in the Biesbosch, and the geometric mean Cd kidney concentration was 55 μg/gdry. Using three different models, an average Cd kidney concentration in the beavers of >100 μg/gdry was predicted in the Biesbosch in the near future. Such a concentration causes kidney damage in some other mammals. Beaver kidneys from the Mulde, a tributary of the Elbe, contained on average 467 μg Cd/gdry, the greatest concentration reported in herbivores. Nevertheless, the fertility along the Mulde was high, due to the fact that it is an otherwise optimal beaver habitat. Furthermore, the low fertility in the Biesbosch was due to a small fraction of successful breeding pairs. We conclude that the initial low population growth rate in the Biesbosch was probably not caused by contamination with Cd. However, future effects on the individual (reproductive) life span cannot be ruled out.


Bark Poplar Willow Population Growth Rate Successful Breeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando M, Sayato Y, Osawa T (1978) Studies on the disposition of calcium in bones of rats after continuous oral administration of cadmium. Toxicol Appl Pharmacol 46:625–632Google Scholar
  2. Andrews SM, Johnson MS, Cooke JA (1984) Cadmium in small mammals from grassland established on metalliferous mine waste. Environ Pollut 33A:153–162Google Scholar
  3. Axelsson B, Piscator M (1966) Renal damage after prolonged exposure to cadmium. Arch Environ Health 12:360–373Google Scholar
  4. Bijlsma L, Kuijpers JWM (1989) Riverwater and the quality of the Delta Waters. In: Hooghart JL, Posthumus CWS (eds) Hydroecological relations in the delta waters of the south-west Netherlands. Proceedings and information no. 41. TNO-Commissie voor Hydrologisch Onderzoek. Den Haag, The NetherlandsGoogle Scholar
  5. Boudewijn TJ, Dirksen S, Mes RG, Teunissen WA (1988) Aalscholvers in de Dordtse Biesbosch: Broedsucces en fourageerplaatskeus in een vervuild ecosysteem. Report 88–6, Ecoland, Utrecht, The NetherlandsGoogle Scholar
  6. Chmielnicka J, Halatek T, Jedlinska U (1989) Correlation of cadmium-induced nephropathy and the metabolism of enogenous copper and zinc in rats. Ecotoxicol Environ Safety 18:268–276Google Scholar
  7. Crête M, Nault R, Walsh P, Benedetti JL, Lefebvre MA, Weber JP, Gagnon J (1989) Variation in cadmium content of caribou tissues from northern Quebec. Sci Total Environ 80:103–112Google Scholar
  8. Dirksz PW, Otte ML, Palsma AJ (1990) Ruimtelijke verspreiding en gedrag van zware metalen en arseen in de Biesbosch. Final report. Vakgroep Fysische Geografie en Bodemkunde, Universiteit van Amsterdam, Amsterdam, The NetherlandsGoogle Scholar
  9. Fagerström T (1991) Biomagnification in food chains and related concepts. Oikos 62:257–260Google Scholar
  10. Finlay MF, Phillips A, Kennedy N (1979) Effects of cadmium on reproduction and fetal health in Peromyscus (white-footed mice). In: Nielson SW, Migaki G, Scarpelli DG (eds) Animals as monitors of environmental pollutants. National Academy of Sciences, Washington DC, pp 379–381Google Scholar
  11. Fowler BA (1992) Mechanisms of kidney cell injury from metals. Environ Health Perspect 100:57–63Google Scholar
  12. Frank A (1986) In search of biomonitors for cadmium: Cadmium content of wild Swedish fauna during 1973–1976. Sci Total Environ 57:57–65Google Scholar
  13. Friberg L, Piscator M, Nordberg GF, Kjellström T (1974) Cadmium in the environment, 2nd ed. CRC Press, Cleveland, OHGoogle Scholar
  14. Friberg L, Kjellström T, Nordberg GF (1986) Cadmium. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals. Volume II: Specific metals, 2nd ed. Elsevier, Amsterdam, The Netherlands, pp 130–184Google Scholar
  15. Frøslie A, Haugen A, Holt G, Norheim G (1986) Levels of cadmium in liver and kidneys from Norwegian Cervides. Bull Environ Contam Toxicol 37:461–466Google Scholar
  16. Gleichman-Verheijen EC, Ma W (1989) Consequenties van verontreiniging van de (water)bodem voor natuurwaarden in de Biesbosch. Report 89/17. Rijksinstituut voor Natuurbeheer, Arnhem, The NetherlandsGoogle Scholar
  17. Goldblatt CJ, Anthony RG (1983) Heavy metals in Northern fur seals (Callorhinus ursinus) from the Pribilof Islands, Alaska. J Environ Qual 12:478–482Google Scholar
  18. Heidecke D (1984) Untersuchungen zur Ökologie und Populations-entwicklung des Elbebibers, Castor fiber albicus Matschie, 1907. Teil 1. Biologische und populationsökologische Ergebnisse. Zool Jb Syst 111:1–41Google Scholar
  19. — (1986) Erste Ergebnisse der Biberumsiedlungen in der DDR. Zool Abh (Dresden) 41:137–142Google Scholar
  20. — (1989) Ökologische Bewertung von Biberhabitaten. Säugetierk Inf 13:13–28Google Scholar
  21. — (1991) Zum Status des Elbebibers sowie etho-ökologische Aspekte. Seevögel 12:33–38Google Scholar
  22. Hillis TL, Parker GH (1993) Age and proximity to local ore-smelters as determinants of tissue metal levels in beaver (Castor canadensis) of the Sudbury (Ontario) area. Environ Pollut 80:67–72Google Scholar
  23. Kocan AA, Shaw MG, Edwards WC, Eve JH (1980) Heavy metal concentrations in the kidneys of white-tailed deer in Oklahoma. J Wildl Dis 16:593–596Google Scholar
  24. Laskowski R (1991) Are the top carnivores endangered by heavy metal biomagnification? Oikos 60:387–390Google Scholar
  25. Ma WC (1987) Heavy metal accumulation in the mole, Talpa europea, and earthworms as an indicator of metal bioavailability in terrestrial environments. Bull Environ Contam Toxicol 39:933–938Google Scholar
  26. Ma WC, Broekhuizen S (1989) Belasting van dassen Meles meles met zware metalen: Invloed van de verontreinigende maasuiterwaarden? Lutra 32:139–151Google Scholar
  27. Ma WC, Denneman W, Faber J (1991) Hazardous exposure of ground-living small mammals to cadmium and lead in contaminated terrestrial ecosystems. Arch Environ Contam Toxicol 20:266–270Google Scholar
  28. Ma WC, Van der Voet H (1993) A risk-assessment model for toxic exposure of small mammalian carnivores to cadmium in contaminated natural environments. Sci Total Environ (Suppl):1701–1714Google Scholar
  29. Marquenie JM, Roele P, Hoornsman G (1986) Onderzoek naar de effecten van contaminanten op duikeenden. Report 86/066. TNO-Maatschappelijke Technologie, Den HelderGoogle Scholar
  30. Mart L, Nürnberg HW, Rützel H (1985) Levels of heavy metals in the tidal Elbe and its estuary and the heavy metal input into the sea. Sci Total Environ 44:35–49Google Scholar
  31. Munshower FF, Neuman DR (1979) Metals in soft tissue of mule deer and antelope. Bull Environ Contam Toxicol 22:827–832Google Scholar
  32. Mutz M, Smeitink M (1990) Elbe, rivier van 2 Duitslanden. Greenpeace 3:23–26Google Scholar
  33. Myklebust I, Nybø S, Kålås JA, Pedersen HC (1993) Cadmium accumulation in willow ptarmigan (Lagopus L. lagopus) and rock ptarmigan (L. mutus) in Central Norway. Sci Total Environ (Suppl):135–139Google Scholar
  34. National Research Council (NRC), Subcommittee on mineral toxicity in animals (1980) Mineral tolerance of domestic animals. National Academy of Sciences, Washington, DCGoogle Scholar
  35. Nicholson JK, Kendall MD, Osborn D (1983) Cadmium and mercury nephrotoxicity. Nature 304:633–635Google Scholar
  36. Nicholson JK, Osborn D (1983) Kidney lesions in pelagic seabirds with high tissue levels of cadmium and mercury. J Zool 200:99–118Google Scholar
  37. Niemi A, Vanäläinen ER, Hirvi T, Valtonen M (1993) Heavy metals in muscle, liver, and kidney from Finnish elk in 1980–81 and 1990. Bull Environ Contam Toxicol 50:834–841Google Scholar
  38. Nolet BA (1992) Reintroduction of beaver in the Rhine and Meuse estuary. In: Schröpfer R, Stubbe M, Heidecke D (eds) Proceedings of the 2. Internationalen Symposiums Semiaquatische Säugetiere. Martin-Luther-Universität, Halle/Saale, Germany, pp 130–140Google Scholar
  39. Nolet BA, Hoekstra A, Ottenheim MM (1994) Selective foraging on woody species by the beaver Castor fiber, and its impact on a viparian forest. Biol Conserv (in press)Google Scholar
  40. Nolet BA, Rosell F (1994) Territoriality and time budgets in beavers during sequential settlement. Can J Zool (in press)Google Scholar
  41. Payne NF (1984) Population dynamics of beaver in North America. Acta Zool Fennica 172:263–266Google Scholar
  42. Piechocki R (1962) Die Todesursachen der Elbe-Biber (Castor fiber albicus Matschie 1907) unter besonderer Berücksichtigung funktioneller Wirbelsäulen-Störungen. Nova Acta Leopoldina 25:1–75Google Scholar
  43. Schäfer SG, Schwegler U, Schümann K (1990) Retention of cadmium in cadmium-naive normal and iron-deficient rats as well as in cadmium-induced iron deficient animals. Ecotoxicol Environ Safety 20:71–81Google Scholar
  44. Schinner W (1981) Untersuchungen über endogene und exogene Einflusse auf den Blei(Pb)- und Cadmium(Cd)-Gehalt in Muskeln und Organen von Rehwild (Capreolus capreolus L.) und Wildkaninchen (Lepus cuniculus L.). PhD Thesis, Justus-Liebig-Universität, Giessen, GermanyGoogle Scholar
  45. Schroeder HA, Mitchener M (1971) Toxic effects of trace elements on the reproduction of mice and rats. Arch Environ Health 23:102–106Google Scholar
  46. Sileo L, Beyer WN (1985) Heavy metals in white-tailed deer living near a zinc smelter in Pennsylvania. J Wildl Dis 21:289–296Google Scholar
  47. Smith S, Schleicher RG, Hieftje GM (1982) New atomic absorption background correction technique. Paper no. 442, presented at the 33rd Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Atlantic City, NJGoogle Scholar
  48. Stiefel A, Piechocki R (1986) Circannuelle Zuwachslinien im Molarenzement des Bibers (Castor fiber) als Hilfsmittel für exakte Altersbestimmung. Zool Abh (Dresden) 41:165–175Google Scholar
  49. Van Barneveld AA, Van den Hamer CJA (1985) Influence of Ca and Mg on the uptake and deposition of Pb and Cd in mice. Toxicol Appl Pharmacol 79:1–10Google Scholar
  50. Van Nostrand FC, Stephenson AB (1964) Age determination for beavers by tooth development. J Wildl Manage 28:430–434Google Scholar
  51. Van Straalen NM, Ernst WHO (1991) Metal biomagnification may endanger species in critical pathways. Oikos 62:255–256Google Scholar
  52. Wolkers J (1993) Undernutrition in wild boar (Sus scrofa) and red deer (Cervus elaphus). The relation between tissue composition and nutritional status. PhD Thesis, University of Utrecht, Utrecht, The NetherlandsGoogle Scholar
  53. Wren CD (1984) Distribution of metals in tissues of beaver, raccoon and otter from Ontario, Canada. Sci Total Environ 34:177–184Google Scholar
  54. Zurowski W, Kasperczyk B (1988) Effects of reintroduction of European beaver in the lowlands of the Vistula basin. Acta Theriol 33:325–338Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • B. A. Nolet
    • 1
  • V. A. A. Dijkstra
    • 2
  • D. Heidecke
    • 3
  1. 1.Institute for Forestry and Nature Research (IBN-DLO)WageningenThe Netherlands
  2. 2.Department of Nature ConservationAgricultural University of WageningenWageningenThe Netherlands
  3. 3.Institut für ZoologieMartin-Luther-UniversitätHalle/SaaleGermany

Personalised recommendations