, Volume 24, Issue 1, pp 27–48 | Cite as

Remote sensing of substances in water

  • Piepen Heinz van der 
  • Doerffer Roland 


Remote sensing of water colour and its application to the mapping of pigments, suspended matter and other substances by means of airborne and spaceborne sensors is discussed. After an introduction to the physical process involved, the methods for a quantitative interpretation especially of CZCS data are indicated. Applications towards the monitoring of coastal pollution, of algae blooms and of dynamic processes are shown by means of selected examples. Multispectral scanner and imaging spectrometer technologies are discussed with special reference to NASA's Earth Observation System and ESA's Earth Observation Programme.


Colour Environmental Management Physical Process Dynamic Process Special Reference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, V.; Doerffer, R.: Aerial survey of the temporal and spatial distribution of phytoplankton during FLEX 76. In: Sündermann, J.; Lenz, W. (eds.), North Sea Dynamics, pp. 517–529. Springer-Verlag, Berlin-Heidelberg 1983.Google Scholar
  2. Arvesen, J. C.; Millard, J. P.; Weaver, E. C.: Remote sensing of chlorophyll and temperature in marine and fresh waters. Astronautica Acta 18, 229–239 (1973)Google Scholar
  3. Atkins, W. R. G.; Poole, H. H.: The photo-electric measurement of penetration of light of various wavelengths into the sea and the physiological bearing of the results. Philos. Trans. R. Soc. London, Ser. B, 222, 129 (1933)Google Scholar
  4. Austin, R. W.: The remote sensing of spectral radiance from below the ocean surface. In: Jerlov, N. G.; Steemann Nielsen, E. (eds.), Optical aspects of oceanography, pp. 317–344 (1974). Academic Press, London-New York 1974.Google Scholar
  5. Barrot, K. W.; van der Piepen, H.; Amann, V.: Differenzierung unterschiedlicher Wasserkoerper mit optischen Fernerkundungsmethoden anhand von Daten des Alboran-Meer-Experiments 1982. DLR Forschungsbericht FB 86–48 (1986)Google Scholar
  6. Clarke, G. L.; Ewing, G. C.; Lorenzen, C. J.: Remote measurement of ocean colour as an index of biological productivity. Proc. Sixth Intern. Symp. Remote Sensing of the Environment, Ann Arbor Oct. 13–16 1969, pp. 991–1001 (1970)Google Scholar
  7. Cox, C.; Munk, W.: Some problems in optical oceanography. Journal of Marine Research 14, 63–78 (1955)Google Scholar
  8. Doerffer, R.: Untersuchungen über die Verteilung oberflächennaher Substanzen im Elbe-Aestuar mit Hilfe von Fernmessverfahren. Arch. Hydrobiol./Suppl. 43 2/3, 119–224 (1979)Google Scholar
  9. Doerffer, R.: Factor analysis in ocean colour interpretation. In: Gower, J. F. R. (ed.), Oceanography from space. Marine Science Series, Vol. 13, pp. 339–345, Plenum Press, New York-London 1981.Google Scholar
  10. Doerffer, R.; Amann, V.; van der Piepen, H.: Remote sensing of exceptional plankton blooms. Special meeting on the causes, dynamics and effects of exceptional marine blooms and related events. ICES, Copenhagen, Oct. 4–5, 1984Google Scholar
  11. Doerffer, R.; Fischer, J.; Stössel, M.; Brockmann, C.: Analysis of Thematic Mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea). Remote Sens. Environ. 28, 61–73 (1989)Google Scholar
  12. Doerffer, R.: How to derive concentrations of chlorophyll, suspended matter and gelbstoff from multispectral radiances of case 2 water. ICES Statutory Meeting, Copenhagen 1990, theme session P, paper C. M. 1990 E:19 (1990)Google Scholar
  13. Duntley, S. Q.; Austin, R. W.; Wilson, W. H.; Edgerton, C. F.; Moran, S. E.: Ocean color analysis. Scripps, Institution of Oceanography, University of California, San Diego, Technical Report SIO 74–10 (1974)Google Scholar
  14. ESA: Ocean Colour Working Group. Progress report to ESA Earth Observation Advisory Committee ESA BR-20 (June 1984)Google Scholar
  15. ESA: Ocean Colour, Report by the ESA Ocean Colour Working Group. Villefranche-sur-Mer, November 1986. ESA SP-1083 (July 1987)Google Scholar
  16. Feldmann, G.; Kuring, N.; Ng, C.; Esaias, W.; McClain, C. R.; Elrod, J.; Maynard, N.; Endres, D.; Evans, R.; Brown, J.; Walsh, S.; Carle, M.; Podesta, G.: Ocean color: availability of the global data set. EOS 70 (23), 634–641 (1989)Google Scholar
  17. Fischer, J.: Fernerkundung von Schwebstoffen im Ozean. Hamburger Geophysikalische Einzelschriften, herausgegeben von den Geophysikalischen Instituten der Universität Hamburg, Reihe A Heft 65 1983.Google Scholar
  18. Fischer, J.: Remote sensing of suspended matter, phytoplankton and yellow substances over coastal waters — part 1: aircraft measurements. Mitt. Geol.-Pal. Inst. Univ. Hamburg, SCOPE/UNEP, Sonderbd. 55, 85 (1984)Google Scholar
  19. Fischer, J.; Doerffer, R.: An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements. Advances in Space Research 7, 2, 21–26 (1987)Google Scholar
  20. Gierloff-Emden, H. G.: Das Luftbild als Hilfsmittel zur Aufklärung der Dynamik von Schwebstoff- und Sinkstofftransport in der Nordsee. Deutsche Hydrographische Zeitschrift 20, 275–278 (1967)Google Scholar
  21. Gower, J. F. R.; Borstad, G.: Use of the in-vivo fluorescence line at 685 nm for remote sensing surveys of surface chlorophyll-a. In: Gower, J. F. R. (ed.), Oceanography from space. Marine Science Series, Vol. 13, pp. 329–338, Plenum Press, New York-London 1981.Google Scholar
  22. GKSS: The use of chlorophyll fluorescence measurements from space for separating constituents of sea water. ESA contract No. RFQ 3-5059/84/NL/MD, Vol I (Summary Report) and Vol II (Appendices), December 1986.Google Scholar
  23. Gordon, H. R.: Radiative transfer: a technique for simulating the ocean in satellite remote sensing calculations. Applied Optics 15, 1974–1979 (1976)Google Scholar
  24. Gordon, H. R.: Removal of atmospheric effects from satellite imagery of the oceans. Applied Optics 17, 10, 1631–1636 (1978)Google Scholar
  25. Gordon, H. R.; Morel, A. Y.: Remote assessment of ocean color for interpretation of satellite visible imagery. Lecture Notes on Coastal and Estuarine Studies, Vol. 4, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo 1983.Google Scholar
  26. Hollinger, A. B.; Gray, L. H.; Gower, J. F. R.; Edel, H. R.: The fluorescence line imager: an imaging spectrometer for ocean and land remote sensing. SPIE Conference on Imaging Spectroscopy II, San Diego 20–21 August 1987, Vol 834, pp. 2–11 (1987)Google Scholar
  27. Hovis, W. A.; Clark, D. K.; Anderson, F.; Austin, R. W.; Wilson, W. H.; Baker, E. T.; Ball, D.; Gordon, H. R.; Mueller, J. L.; El Sayed, S. J.; Sturm, B.; Wrigley, R. C.; Yentsch, C. S.: Nimbus-7 coastal zone color scanner: system description and initial imagery. Science 210, 60–63 (1980)MathSciNetzbMATHGoogle Scholar
  28. Hulburt, E. O.: The polarization of light at sea. J. Opt. Soc. Am. 24, 35–42 (1934)Google Scholar
  29. Jain, S. C.; Miller, J. R.: Subsurface water parameters. Optimization approach to their determination from remotely sensed water colour data. Applied Optics 15, 886–890 (1976)Google Scholar
  30. Jerlov, N. G.; Liljequist, G.: On the angular distribution of submarine daylight and the total submarine illumination. Sven. Hydrogr. — Biol. Komm. Skr., Ny Ser. Hydrogr. 14, 15 pp. (1938)Google Scholar
  31. Jerlov, N. G.: Marine Optics. Second edn. Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York 1976.Google Scholar
  32. Jospeh, J.: Untersuchungen über Ober- und Unterlichtmessungen im Meere und über ihren Zusammenhang mit Durchsichtigkeitsmessungen. Deutsche Hydrographische Zeitschrift 3, 324–335 (1950)Google Scholar
  33. Kalle, K.: Zum Problem der Meerwasserfarbe. Ann. Hydrol. Mar. Mitt. 66, 1–13 (1938)Google Scholar
  34. Kattawar, G. W.; Humphreys, T. J.: Remote sensing of chlorophyll in an atmosphere-ocean environment: a theoretical study. Applied Optics 15, 273–282 (1976)Google Scholar
  35. Knudsen, M: On measurement of penetration of light into the sea. Int. Explor. Mer, Publ. Circ. 76, 16 pp. (1922)Google Scholar
  36. Kim, H. H.; Linebaugh, G. H.: Early evaluation of TM data from coastal process studies. Adv. Space Res. 5, 21–29 (1984)Google Scholar
  37. Kim, H. H.; van der Piepen, H.; Amann, V.; Doerffer, R.: An evaluation of 685 nm fluorescence imagery of coastal waters. ESA Journal 85, 1, 17–27 (1985)Google Scholar
  38. Kunkel, B.; Blechinger, F.; Viehmann, D.; van der Piepen, H.; Doerffer, R.: ROSIS — a candidate instrument for polar platform missions. Proc. SPIE Conference on Optoelectronic Technologies for Remote Sensing, Cannes, Nov. 1987 Vol. 868.Google Scholar
  39. Lacombe, H.; Richez, C.: The regime of the Strait of Gibraltar. In: Nihoul, J. C. J. (ed.), Hydrodynamics of semi-enclosed seas, pp. 13–73, Elsevier, Amsterdam 1982.Google Scholar
  40. Morel, A. Y.: Optical properties of pure water and pure sea water. In: Jerlov, N. G.; Steemann Nielsen, E. (eds.), Optical aspects of oceanography, pp. 1–24, Academic Press, London-New York 1974.Google Scholar
  41. Morel, A. Y.; Prieur, L.: Analysis of variations in ocean colour. Limnology and Oceanography 22, 4, 709–722 (1977)Google Scholar
  42. Mueller, J. L.: Ocean colour spectra measured off the Oregon coast: characteristic vectors. Applied Optics 15, 2, 394–402 (1976)Google Scholar
  43. NASA: Earth Observations System Vol. IIb. MODIS instrument panel report. NASA 1986Google Scholar
  44. NASA: Earth Observations System Vol. IIc. HIRIS instrument panel report. NASA 1987Google Scholar
  45. Nelder, J. A.; Mead, R.: A simplex method for function minimization. The Computer Journal 7, 308–313 (1965)Google Scholar
  46. Neville, R. A.; Gower, J. F. R.: Passive remote sensing of phytoplankton via chlorophyll-a fluorescence. Journal of Geophysical Research 82, 3487–3493 (1977)Google Scholar
  47. Nishizawa, S.; Fukuda, M.; Inoue, N.: Photographie study of suspended matter and plankton in the Sea. Bull. Fac. Fish., Hokkaido Univ. 5, 36–40 (1954)Google Scholar
  48. Petterson, H.: Scattering and extinction of light in sea water. Medd. Oceanogr. Inst. Goeteborg 9, 1–16 (1934)Google Scholar
  49. Plass, G. N.; Kattawar, G. W.; Guinn, J. A.: Radiance distribution over a ruffled sea: contribution from glitter, sky and ocean. Applied Optics 15, 12, 3161–3165 (1976)Google Scholar
  50. Prieur, L.; Morel, A. Y.: Relation theoretiques entre le facteur de reflexion diffuse de l'eau de mer a diverses profondeurs et les caracteristiques optiques (absorption, diffusion). IAPSO-IUGGU XVI General Assembly, Grenoble 1975.Google Scholar
  51. Prieur, L.; Sathyendranath, S.: An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter and other particulate materials. Limnology and Oceanography 26, 4, 671–689 (1981)Google Scholar
  52. Quenzel, H.; Kaestner, M.: Optical properties of the atmosphere: calculated variability and application to satellite remote sensing of phytoplankton. Applied Optics 19, 8, 1338–1344 (1980)Google Scholar
  53. Ramsey, R. C.: Study of remote measurement of ocean colour. Final Report, TRW, NASW-1658, 1–89 (1968)Google Scholar
  54. Raschke, E.: Berechnung des durch Mehrfachstreuung entstehenden Feldes solarer Strahlung in einem System Ozean-Atmosphäre. Forschungsbericht, Bundesminister für Bildung und Wissenschaft BMBW-FB W 71–20 (1971)Google Scholar
  55. Shuleikin, V. V.: On the colour of the sea. Phys. Rev. 22, 86–100 (1923)Google Scholar
  56. Siegel, H.: On the relationship between the spectral reflectance and inherent optical properties of oceanic water. Beitr. Meereskd., Berlin 56, 73–80 (1987)Google Scholar
  57. Smith, R. C.; Baker, K. S.: Optical classification of natural waters. Limnology and Oceanography 23, 260–267 (1978)Google Scholar
  58. Sturm, B.; Bekkering, A.; Fraysee, G.; Galli di Paratesi, S.; Henry, B. M.; Maracci, G.; Nykjaer, L.; Schlittenhardt, P.; Tassan, S.: Status and prospects of the JRC work on the application of ocean colour monitoring from space. Joint Research Centre, Ispra Establishment, Special Report S.P.I.O5.E2.86.84 (October 1986).Google Scholar
  59. Sturm, B.: The atmospheric correction of remotely sensed data and the qualitative determination of suspended matter in marine water surface layers. In: Cracknell, A. P. (ed.). Remote Sensing in Meteorology, Oceanography and Hydrology, pp. 163–197, Ellis Horwood Ltd., Chichester 1980.Google Scholar
  60. Sturm, B.: Ocean colour remote sensing and quantitative retrieval of surface chlorophyll in coastal waters using Nimbus CZCS data. In: Gower, J. F. R. (ed.), Oceanography from space. Marine Science Series, Vol. 13, pp. 267–279, Plenum Press, New York-London 1981.Google Scholar
  61. Tassan, S.: Evaluation of the potential of the Thematic Mapper for marine applications. Intern. J. Remote Sensing 8, 10, 1455–1478 (1987)Google Scholar
  62. van der Piepen, H.; Doerffer, R.; Gierloff-Emden, H. G.; Amann, V.; Barrot, K. W.; Helbig, H.: Kartierung von Substanzen im Meer mit Flugzeugen und Satelliten. Münchener Geographische Abhandlungen A 37 (1987)Google Scholar
  63. Viollier, M.: Radiometric calibration of the Coastal Zone Color Scanner on Nimbus-7: a proposed adjustment. Applied Optics 21, 6, 1142–1145 (1982)Google Scholar
  64. Wattenberg, H.: Untersuchungen über Durchsichtigkeit und Farbe des Seewassers. I. Kieler Meeresforsch. 2 (1938)Google Scholar
  65. Whitney, L. V.: Transmission of solar energy and the scattering produced by suspension in lake waters. Trans. Wisc. Acad. Sci. Arts Lett. 31, 201–221 (1938)Google Scholar
  66. Wiebe, P. H.: Rings of the Gulf Stream. Scientific American 246, 3, 60–70 (1982)Google Scholar
  67. Zimmermann, G.: Spektral hochaufgeloeste Fernerkundung zur Bestimmung oekologischer Veraenderungen. In: Gesamtdeutsches Symposium: Raumfahrt und Umwelt, Hannover 15. Mai 1990. DGLR-Bericht 90–03, 44–50 (1990)Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Piepen Heinz van der 
    • 1
  • Doerffer Roland 
    • 2
  1. 1.Amann, Volker, Institute of OptoelectronicsDLROberpfaffenhofenGermany
  2. 2.Institute of PhysicsGKSSGeesthachtGermany

Personalised recommendations