Effects of some factors on uptake and release of 106Ru by a freshwater moss, Plathypnidium riparioïdes

  • Françoise Vray
  • Jean-Pierre Baudin
  • Maria Svadlenková


In order to correctly interpret field data related to bioindicators, laboratory experiments were carried out to study 106Ru accumulation and release by mosses, as a function of experimental procedures and conditions, aimed to reproduce ecological realities. Mosses were exposed to 106Ru during 5 to 7 days and then transferred to an inactive, daily-renewed medium. Results were expressed mathematically by a sum of two exponential functions for fixation, which was shown to be a two-phase rapid and intense phenomenon, and by a simple exponential function for elimination, which was slower and regular. Three rhythms of contaminant release were simulated, and they were found to have little effect on fixation extent as measured by concentration factor, while the speed of fixation was affected slightly. Accumulation was also studied under two opposite seasons, simulated by modifying temperature, illumination and daylight period. It occured with very different kinetics, suggesting an important intervention of adsorption processes, whose speed is conditioned by temperature. This hypothesis was supported by the considerable effect the size of the exchange surface had on extent and speed of fixation, shown by comparison of accumulation in two species. Nevertheless, reduced uptake in darkness indicated the probable role of physiological processes. As far as desorption is concerned, the studied factors had little effect. The most significant differences in retention were due to the previous average exposure time and to exchange surface size.


Waste Water Water Pollution Physiological Process Field Data Exponential Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoyama I, Inoue Y (1973) Estimation and evaluation of radioactive contamination through a food wed in an aquatic ecosystem. An application of the compartment model to transfer of radioactive substance through a food chain. J Rad Res 14:375–381Google Scholar
  2. Baudin JP (1974) Premières données sur l'étude expérimentale du cycle du zinc dans l'étang de l'olivier. Vie Milieu 24(1):59–80Google Scholar
  3. — (1982) Bioaccumulation et élimination du 65Zn par Gammarus aequicauda Martimov. Marine Environ Res 7:227–233Google Scholar
  4. Baudin JP, Fritsch AF, Georges J (1990) Influence of labelled food type on the accumulation and retention of 60Co by a freshwater fish, Cyprinus carpio L. Water Air Soil Pollut 51:261–270Google Scholar
  5. Baudin JP, Lambrechts A, Pally M (1991) Utilisation des mousses aquatiques comme bioindicateurs de pollution radioactive. Hydroécol Appl 3(2):209–240Google Scholar
  6. Baudin JP, Nucho R (1992) 60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus) Environ Pollut 76:(in press)Google Scholar
  7. Comar CL (1955) Radioisotopes in biology and agriculture; principles and practice. McGraw-Hill, NYGoogle Scholar
  8. Empain A (1976) Estimation de la pollution par les métaux lourds dans la Somme par l'analyse des bryophytes aquatiques. Bull Fr Pisc 260:138–142Google Scholar
  9. Foulquier L, Lambrechts A, Pally M (1987) Impact radioécologique d'une usine de retraitement de combustible nucléaire sur un fleuve, ile Rhône. Proceedings of an international conference on nuclear fuel reprocessing and waste management, Paris, 1987Google Scholar
  10. Foulquier L, Baudin-Jaulent Y (1990) Radioecological impact of the Chernobyl accident on aquatic ecosystems. Proceedings of the Conference on Radioecology, High Tatras, Czechoslovakia, 1989Google Scholar
  11. Garnier J, Baudin JP (1989) Accumulation and depuration of 110mAg by a planktonic alga, Scenedesmus obliquus. Water Air Soil Pollut 45:287–299Google Scholar
  12. Garnier J, Baudin JP, Foulquier L (1990) Accumulation from water and depuration of 110mAg by a freshwater fish, Salmo trutta L. Water Res 24(11):1407–1414Google Scholar
  13. Garnier-Laplace J, Baudin JP, Foulquier L (1991) Experimental study of 110mAg transfer from sediment to biota in a simplified freshwater ecosystem. Hydrobiologia 3(2):149–208Google Scholar
  14. Goldstein RA, Elwood JW (1971) A two-compartment, three parameters model for the comparison absorption and retention of ingested elements by animals. Ecology 52:935–939Google Scholar
  15. Hébrard JP, Foulquier I, Grauby A (1968) Aperçu sur les modalités de la contamination d'une mousse dulcicole, Plathypnidium riparioïdes (Hedw) Dix, par le césium-137 et le strontium-90. Rev Bryol et Lichenol 36:219–242Google Scholar
  16. Hébrard JP, Foulquier L (1975) Introduction à la fixation du manganèse-54 par Plathypnidium riparioödes (Hedw) Dix. Rev Bryol et Lichenol 41:35–54Google Scholar
  17. Jones KC, Peterson PJ, Davies BE (1985) Silver and others metals in some aquatic Bryophytes from streams in the land mining District of Mid-Wales, Great Britain. Water Air Soil Pollut 24:329–338Google Scholar
  18. Kelly MG, Girton C, Whitton BA (1987) Use of moss-bags for monitoring heavy metals in rivers. Water Res 21:1429–1435Google Scholar
  19. Lambinon J, Descy JP, Empain A, Kirchmann R, Bonnyns-Van Gelder E (1976) La surveillance des sites d'implantation des centrales nucléaires. Effets des rejects d'effluents sur l'écosystème mosan: acquis et perspectives. Annales de l'Association Belge de Radioprotection, 2(3):201–216Google Scholar
  20. Lambrechts A, Foulquier L (1987) Radioecology of the Rhône bassin: data on the fish of the Rhône. J Environ Radioactivity 5:105–121Google Scholar
  21. Luykx F, Fraser G (1983) Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the european community. Discharge data 1976–1980. Radioecological aspects. CEE, Health and Safety Directorate, LuxembourgGoogle Scholar
  22. Maurel-Kermarrec A, Pally M, Foulquier L, Hébrard JP (1983) Cinétique de la fixation d'un mélange de césium 137, de chrome 51, de cobalt 60, de manganèse 54 et de sodium 22 par Plathypnidium riparioïdes (Hedw) Dix. Cryptogamie Bryol Lichenol 4:299–313Google Scholar
  23. Mouvet C (1979) Utilisation des bryophytes aquatiques pour l'étude de la pollution des cours d'eau par les métaux lourds et les radionucléides. Rev Biol Ecol Méditerranéenne 6(3–4):193–204Google Scholar
  24. -- (1983) Les micropolluants dans les divers compartiments de l'écosystème des eaux douces: utilisation des niveaux de contamination comme indicateurs de qualité. Proceedings of a conference on water, research and environment, Lille, France, 1983Google Scholar
  25. — (1985) The use of aquatic bryophytes to monitor heavy metal pollution of freshwaters as illustrated by case studies. Verh Int Ver Limnol 22:2420–2425Google Scholar
  26. Mouvet C, Pattee E, Cordebar P (1986) Utilisation des mousses aquatiques pour l'identification et la localisation précise de sources de pollution métallique multiforme. Acta Ecol Ecol Appl 7:77–91Google Scholar
  27. Nucho R, Baudin JP (1989) 60Co retention by a freshwater planktonic alga, Scenedesmus obliquus. Environ pollut 62:265–279Google Scholar
  28. Papastefanou C, Manolopoulou M, Sawidis T (1989) Lichens and mosses: biological monitors of radioactive fallout from the Chernobyl reactor accident. J Environ Radioactivity 9:199–207Google Scholar
  29. Say PJ, Harding JPC, Whitton BA (1981) Aquatic mosses as monotors of heavy metal contamination in the River Etherow, Great Britain. Environ Pollut B 2:295–307Google Scholar
  30. Timofeeva-Resovskaya EA, Timofeev-Resovskii NV, Getsova AB, Gileva EA, Jarova TV, Koulikova GM, Mikioutina GA (1960) Accumulation coefficients of Sr, Ru, Cs and Ce radioisotopes in freshwater bodies. Zoologich Zh 39:1449–1453Google Scholar
  31. Van Gelder E, Lambotte JM, Lambinon J, Kirchmann R (1988) Impact des retombées de l'accident de Tchernobyl sur les bioindicateurs végétaux utilisés en routine dans la surveillance radioécologique. Proceedings of an international Symposium on radioecology, Cadarache, France, 1988Google Scholar
  32. Vila A (1982) Méthodes d'identification des modèles dynamiques. In: Lebreton JD, Millier C (ed) Modèles dynamiques déterministes en biologie. Masson, Paris, pp 171–195Google Scholar
  33. Whitton BA, Burrows IJ, Kelly MG (1989) Use of Cladophora glomerata to monitor heavy metals in rivers. J Appl Phycol 1:293–299Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Françoise Vray
    • 1
  • Jean-Pierre Baudin
    • 1
  • Maria Svadlenková
    • 2
  1. 1.Institut de Protection et de Sûreté Nucléaire (IPSN/CEA), Département de Protection de l'Environnement et des Installations, Laboratoire de Radioécologie des Eaux ContinentalesCentre d'études de CadaracheSaint Paul Lez DuranceFrance
  2. 2.Institute of Landscape EcologyCzechoslovak Academy of SciencesCeské BudejoviceCzechoslovakia

Personalised recommendations