Skip to main content
Log in

Thermal expansion, Debye temperature and Grüneisen parameter of synthetic (Fe, Mg)SiO3 orthopyroxenes

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Thermal expansion properties of synthetic orthopyroxenes (Fe0.20Mg0.80)SiO3, (Fe0.40Mg0.60)SiO3, (Fe0.50Mg0.50)SiO3, (Fe0.75Mg0.25)SiO3 and (Fe0.83Mg0.17)SiO3 were systematically studied by means of single-crystal x-ray diffraction in the temperature range from 296 to 1300 K. The measurements of unit cell dimensions as a function of temperature reveal that the a and c dimensions and the unit cell volume V increase nonlinearly with a positive curvature with rising temperature, whereas the b dimension behaves differently, depending on the total Fe content. For Mg-rich orthopyroxenes (Fe/(Fe+Mg)<30%), the b dimension expands similarly as the a and c dimensions, but it exhibits a nonlinear increase with a negative curvature for orthopyroxenes with Fe/(Fe+Mg)>30%. Together with the high temperature neutron diffraction data on enstatite (MgSiO3) (McMullan, Haga and Ghose, unpublished) and x-ray diffraction data on ferrosilite (FeSiO3) (Sueno et al. 1976), the measured unit cell dimensions were analyzed in terms of the Grüneisen theory of thermal expansion. The linear thermal expansion coefficients α a and α c both increase as temperature is elevated, with α c increasing faster, while α b changes gradually from increasing for Mg-rich orthopyroxenes to decreasing for Fe-rich orthopyroxenes. The relative magnitudes of linear thermal expansion coefficients are always in the order α b c a between 300 and 500 K, but at higher temperatures, the order changes to α c b a for Mg-rich orthopyroxenes and α c a b for Fe-rich ones. The linear thermal expansion behavior is interpreted on the basis of the structural mechanical model of Weidner and Vaughan (1982). The anomalous behavior of α b is mainly attributed to the changes in the Fe2+ population at the M2 site and the relative stiffness of the M2(Fe2+)-O bonds compared to the M2(Mg2+)-O bonds. The volume thermal expansion coefficients are nonlinear functions of temperature and lie between 23 and 49×10−6/K. The previously reported results of mean volume thermal expansion coefficients appear to represent the α V values characteristic of higher temperatures compared to our results. The thermal Debye temperatures are composition-dependent, decreasing linearly from 812 (MgSiO3) to 561 K (FeSiO3), and are systematically higher than the corresponding acoustic Debye temperatures. The Grüneisen parameters range from 0.85 to 0.89 and do not seem to vary with composition. The linear compressibilities derived from thermal expansion and elastic moduli data agree very well. The pressure derivatives of the isothermal bulk modulus (dK0/dP) are also composition-dependent and decrease from 11.2 (MgSiO3) to 8.77 (FeSiO3). Such large values indicate possible anomalous elastic behavior of orthopyroxenes at high pressures in the Earth's upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto S-I (1972) The system MgO-SiO2 at high-pressures and temperatures-phase equilibria and elastic properties. Tectonophysics 13:161–187

    Google Scholar 

  • Anderson OL (1972) Pattern in elastic constants of minerals important to geophysics. In: Robertson EC (ed) Nature of the Solid Earth, pp 575–612. McGraw-Hill, New York

    Google Scholar 

  • Bass JD, Weidner DJ (1984) Elasticity of single-crystal orthoferrosilite. J Geophys Res 89:4359–4371

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kb and temperatures up to 1750C. J Geophys Res 65:741–748

    CAS  Google Scholar 

  • Bridgman PW (1948) Rough compression on 177 substances to 40000 kg/cm2. Proc Amer Acad Arts Sci 76:71–87

    Google Scholar 

  • Burnham CW, Ohashi Y, Hafner SS, Virgo D (1971) Cation distribution and atomic thermal vibrations in an iron rich orthopyroxene. Am Mineral 56:850–876

    Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  • Chung DH (1974) General relationship among sound speeds. Phys Earth Planet Inter 8:113–120

    Google Scholar 

  • Dietrich P, Arndt J (1982) Effects of pressure and temperature on the physical behavior of mantle-relevant olivine, orthopyroxene and garnet: I. Compressibility, thermal properties and macroscopic Grüneisen parameters. In: Schreyer W (ed) High-Pressure Researches in Geosciences, pp 293–306. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Duffy TS, Vaughan MT (1988) Elasticity of enstatite and its relationship to crystal structure. J Geophys Res 93:383–391

    Google Scholar 

  • Enck DE, Dommel G (1965) Behavior of the thermal expansion of NaCl at elevated temperatures. J Appl Phys 36:839–844

    Google Scholar 

  • Evans BJ, Ghose S, Hafner SS (1967) Hyperfine splitting of Fe57 and Mg-Fe order-disorder in orthopyroxenes (MgSiO3-FeSiO3 solid solution). J Geol 57:306–322

    Google Scholar 

  • Frisillo LA, Buljan ST (1972) Linear thermal expansion coefficients of orthopyroxene to 1000° C. J Geophys Res 77:7115–7117

    Google Scholar 

  • Frisillo LA, Barsch GR (1972) Measurement of single-crystal elastic constants of bronite as a function of pressure and temperature. J Geophys Res 77:6360–6384

    Google Scholar 

  • Ghose S (1965) Mg2+-Fe2+ order in an orthopyroxene, Mg0.93Fe1.01Si2O6. Z Kristallogr 122:81–99

    Google Scholar 

  • Ghose S (1982) Mg-Fe order-disorder in ferromagnesian silicates. I. Crystal Chemistry. In: Saxena SK (ed) Advances in Physical Geochemistry, pp 4–57. Springer-Verlag, Berlin

    Google Scholar 

  • Hawthorne FC, Ito J (1977) Synthesis and crystal-structure refinement of transition-metal orthopyroxenes 1: orthoenstatite and (Mg, Mn, Co) orthopyroxenes. Can Mineral 15:321–338

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative Crystal Chemistry. John Wiley, New York

    Google Scholar 

  • Ito J (1975) High temperature solvent growth of enstatite, MgSiO3 in air. Geophys Res Lett 2:533–535

    Google Scholar 

  • Kumazawa M (1969) Elastic constants of single-crystal orthopyroxenes. J Geophys Res 74:5973–5980

    Google Scholar 

  • Ming LC, Manghnani MH, Kim YH, Usha-Devi S, Xu J-A, Ito E (1992) Thermal expansion studies of (Mg, Fe)2SiO4-spinel using synchrontron radiation. In: Saxena SK (ed) Thermodynamic Data: Systematics and Estimation, pp 315–334. Springer-Verlag, New York

    Google Scholar 

  • Ostrovsky IA (1979) The thermodynamics of substances at very high pressure and temperature and some mineral reactions in the Earth's mantle. Phys Chem Minerals 5:105–118

    Google Scholar 

  • Poirier J-P (1991) Introduction to the Physics of the Earth's interior. Cambridge University Press, Cambridge

    Google Scholar 

  • Ralph RL, Ghose S (1980) Enstatite, Mg2Si2O6: Compressibility and crystal structure at 21 kbar. EOS 61:409

    Google Scholar 

  • Sarver JF, Hummel FA (1962) Stability relations of magnesium metasilicate polymorphs. J Amer Ceram Soc 45:152–157

    Google Scholar 

  • Saxena SK, Ghose S (1971) Mg2+-Fe2+ order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Am Mineral 50:532–559

    Google Scholar 

  • Smyth JR (1973) An orthopyroxene structure up to 850° C. Am Mineral 58:636–648

    Google Scholar 

  • Sueno S, Cameron M, Prewitt CT (1976) orthoferrosilite: High-temperature crystal chemistry. Am Mineral 61:38–53

    Google Scholar 

  • Suzuki I (1975a) Cell parameters and linear thermal expansion coefficients of orthopyroxenes. Zisin (J Seismol Soc Japan) (in Japanese) 30:1–9

    Google Scholar 

  • Suzuki I (1975b) Thermal expansion of periclase and olivine and their anharmonic properties. J Phys Earth 23:145–159

    Google Scholar 

  • Suzuki I, Okajima S, Seya K (1979) Thermal expansion of single crystal manganosite. J Phys Earth 27:63–69

    Google Scholar 

  • Suzuki I, Seya K, Takei H, Sumino Y (1981) Thermal expansion of fayalite, Fe2SiO4. Phys Chem Mineral 7:60–63

    Google Scholar 

  • Tsukimura K, Sato-Sorensen Y, Ghose S (1989) A gas-flow furnace for x-ray crystallography. J Appl Crystallogr 22:401–405

    Google Scholar 

  • Turnock AC, Lindsley DH, Grover JE (1973) Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. Am Mineral 58:50–59

    Google Scholar 

  • Vaughan MT, Bass JD (1983) Single-crystal properties of protoenstatite: A comparison with orthoenstatite. Phys Chem Mineral 10:62–68

    Google Scholar 

  • Virgo D, Hafner SS (1969) Fe2+-Mg order-disorder in heated orthopyroxenes. Mineral Soc Amer Spec Paper 2:67–81

    Google Scholar 

  • Watanabe H (1987) Physico-chemical properties of olivine and spinel solid solutions in the system Mg2SiO4-Fe2SiO4. In: Manghnani MH, Syono Y (eds) High Pressure Research in Mineral Physics, pp 275–278. American Geophysical Union, Washington DC

    Google Scholar 

  • Webb SL, Jackson I (1990) Polyhedral rationalization of variation among the single-crystal elastic moduli for the upper-mantle silicates garnets, olivines and orthopyroxenes. Am Mineral 75:731–738

    Google Scholar 

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:7–13

    Google Scholar 

  • Weidner DJ, Vaughan MT (1982) Elasticity of pyroxenes: Effects of composition versus structure. J Geophys Res 87:9349–9353

    Google Scholar 

  • Weidner DJ, Bass JD, Vaughan MT (1982) The effects of crystal structure and composition on elastic properties of silicates. In: Akimoto S, Manghnani M (eds) High Pressure Research in Geophysics, pp 125–133. Center for Academic Publication, Japan Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Ghose, S. Thermal expansion, Debye temperature and Grüneisen parameter of synthetic (Fe, Mg)SiO3 orthopyroxenes. Phys Chem Minerals 20, 575–586 (1994). https://doi.org/10.1007/BF00211853

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211853

Keywords

Navigation