Skip to main content
Log in

Transition, turbulence and oscillating flow in a pipe a visual study

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Transitional and turbulent oscillatory flow in a rigid pipe with long entry sections was investigated using flow visualization to establish the existence of coherent structures. Flow tracer and high speed motion pictures were used. The simple harmonic motion of a scotch yoke and flywheel linked to a piston and cylinder provided the flow driving force. The camera was convected with the flow by attaching it through a gearing system to the scotch yoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross sectional area of flow

C, K :

constants

D :

pipe diameter

N Re,ave :

Reynolds number based on average velocity (DU ave /v)

N Re,p :

Reynolds number based on maximum oscillatory velocity (DU max /v)

\(N_{Re,\delta } \) :

Reynolds number based on maximum oscillatory velocity and Stokes (boundary) layer thickness (δU max /v)

R :

pipe radius

U :

instantaneous velocity in the flow direction

Ū:

short-term average instantaneous velocity \(\left( {\frac{1}{T}\int\limits_T {U dt} } \right)\)

U * :

friction velocity (U ave (f/2)1/2)

U amp :

amplitude parameter (U max /U ave )

U ave :

average velocity \(\left( {\frac{1}{{AT}}\int\limits_T {\int\limits_A U {\text{ dA dt}}} } \right)\)

U s :

steady velocity

U t :

instantaneous oscillatory velocity

U max :

maximum oscillatory velocity (π X max /T)

u r , u z :

deviations from Ūr, and Ūz

y :

radial coordinate from wall (Rr)

y + :

dimensionless radial coordinate from wall (y U*/v)

α :

frequency parameter [R (ω/v) 1/2]

δ :

Stokes (boundary) layer thickness [C (2 v/ω)1/2]

θ :

normalized time into cycle

μ :

fluid viscosity

v :

fluid kinematic viscosity (μ/ϱ)

ϱ :

density

ω :

angular frequency (2π/T)

-:

overbar, average

sub-c :

critical value

References

  • Blackwelder, R. F.; Kaplan, R. E. 1976: On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89–112

    Google Scholar 

  • Carpenter, C. N. 1973: Drag reduction visual study. Ph.D. Dissertation, The Ohio State University

  • Clarion, C.; Pelissier, R. 1975: A theoretical and experimental study of the velocity distribution and transition to turbulence in free oscillatory flow. J. Fluid Mech. 70, 59–79

    Google Scholar 

  • Corino, E. R. 1965: A visual investigation of the wall region in turbulent flow. Ph.D. Dissertation, The Ohio State University

  • Corino, E. R.; Brodkey, R. S. 1969: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30

    Google Scholar 

  • Fishler, L. S. 1978: Transition, turbulence, and oscillating flow in a pipe: a visual study. Ph.D. Dissertation. The Ohio State University

  • Gilbrech, D. A.; Combs, G. D. 1962: Critical Reynolds numbers for incompressible pulsating flow in tubes. Dev. Theo. Appl. Mech. 1, 292–304

    Google Scholar 

  • Hino, M.; Sawamoto, M.; Takasu, S. 1976: Experiments on transition to turbulence in oscillatory pipe flow. J. Fluid Mech. 75, 193–207

    Google Scholar 

  • Kurzwer, U. H.; Lindgren, E. R.; Lothrop, B. 1989: Onset of turbulence in oscillating flow at low Womersley number. Phys. Fluids A. 1, 1972–1975

    Google Scholar 

  • Lu, S.-Z.; Nunge, R. J.; Erian, F. F.: Mohajery, M. 1975: Measurements of pulsating turbulent water flow in a tube. Proc. of the 1973 Symp. on Turbulence in Liquids. (Eds.: Patterson, G. K.; Zakin, L.) Univ. Missouri-Rolla, pp. 375–393

  • Merkli, P.; Thomann, H. 1975: Transition to turbulence in oscillatory pipe flow. J. Fluid Mech. 68, 567–575

    Google Scholar 

  • Mizushina, T.; Maruyama, T.; Shiozaki, Y. 1973: Pulsating turbulent flow in a tube. J. of Chem. Eng. of Japan. 6, 487–494

    Google Scholar 

  • Nerem, R. M.; Seed, W. A.; Wood, N. B. 1972: An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52, 137–160

    Google Scholar 

  • Nychas, S. G.; Hershey, H. C; Brodkey, R. S. 1973: A visual study of turbulent shear flow. J. Fluid Mech. 61, 513–540

    Google Scholar 

  • Park, J. R. S.; Baird, M. H. I. 1970: Transition phenomena in an oscillating manometer. Can. Jour. Chem. Engin. 48, 491–495

    Google Scholar 

  • Praturi, A. K. 1976: Stereoscopic visual study of a turbulent shear flow. Ph.D. Dissertation, The Ohio State University

  • Praturi, A. K.; Brodkey, R. S. 1978: A stereoscopic visual study of coherent structures in turbulent shear flow. J. Fluid Mech. 89, 251–273

    Google Scholar 

  • Sarpkaya, T. 1966: Experimental determination of the critical Reynolds number for pulsating poiseuille flow. ASME Trans., J. Basic Eng. 88, 589–598

    Google Scholar 

  • Sergeev, S. I. 1966: Fluid oscillations in pipes at moderate Reynolds numbers. Fluid Dynamics 1, 121–122

    Google Scholar 

  • Yellin, E. L. 1966: Laminar-turbulent transition process in pulsatile flow. Circulation Res. 19, 791–804

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishler, L.S., Brodkey, R.S. Transition, turbulence and oscillating flow in a pipe a visual study. Experiments in Fluids 11, 388–398 (1991). https://doi.org/10.1007/BF00211793

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211793

Keywords

Navigation