Journal of Biomolecular NMR

, Volume 6, Issue 2, pp 129–134 | Cite as

Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis

  • Takanori Kigawa
  • Yutaka Muto
  • Shigeyuki Yokoyama
Research Paper


For the application of multidimensional NMR spectroscopy to larger proteins, it would be useful to perform selective labeling of one of the 20 amino acids. For some amino acids, however, amino acid metabolism drastically reduces the efficiency and selectivity of labeling in in vivo expression systems. In the present study, a cell-free protein synthesis system was optimized, so that highly efficient and selective stable isotope labeling of proteins can be achieved in the absence of amino acid metabolism. The productivity of the E. coli cell-free coupled transcription-translation system was first improved, by about fivefold, by using the T7 RNA polymerase for transcription and also by improving the translation conditions. Thus, about 0.1 mg protein per 1 ml reaction mixture was synthesized. Then, this improved cell-free system was used for Asp- or Ser-selective 15N-labeling of the human c-Ha-Ras protein. With a 15 ml cell-free reaction, using less than 1 mg of 15N-labeled amino acid, 1 mg of the Ras protein was obtained. 1H-15N HSQC experiments confirmed that the Ras protein was efficiently labeled with high selectivity. These results indicate that this cell-free protein synthesis system is useful for NMR studies.


Protein expression Cell-free protein synthesis Selective stable isotope labeling Ras protein 



amino acid-selective stable isotope labeling


sodium 2,2-dimethyl-2-silapentane-5-sulfonate




heteronuclear single-quantum coherence spectroscopy


polyethylene glycol




sodium dodecyl sulfatepolyacrylamide gel electrophoresis


time-proportional phase incrementation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ArataY., KatoK., TakahashiH. and ShimadaI. (1994) Methods Enzymol., 239, 440–464.Google Scholar
  2. BodenhausenG. and RubenD.J. (1980) Chem. Phys. Lett., 69, 185–189.Google Scholar
  3. DriscollP.C., CloreG.M., MarionD., WingfieldP.T. and GronenbornA.M. (1990) Biochemistry, 29, 3542–3556.Google Scholar
  4. EndoY., OtsuzukiS., ItoK. and MiuraK. (1992) J. Biotechnol., 25, 221–230.Google Scholar
  5. Fujita-YoshigakiJ., ItoY., YamasakiK., MutoY., MiyazawaT., NishimuraS. and YokoyamaS. (1992) J. Protein Chem., 11, 739–747.Google Scholar
  6. HaJ.-M., ItoY., KawaiG., MiyazawaT., MiuraK., OhtsukaE., NoguchiS., NishimuraS. and YokoyamaS. (1989) Biochemistry, 28, 8411–8416.Google Scholar
  7. HuJ.-S. and RedfieldA.G. (1993) Biochemistry, 32, 6763–6772.Google Scholar
  8. KigawaT. and YokoyamaS. (1991) J. Biochem., 110, 166–168.Google Scholar
  9. KraulisP.J., DomailleP.J., Campbell-BurkS.L., AkenT.V. and LaueE.D. (1994) Biochemistry, 33, 3515–3531.Google Scholar
  10. LaemmliU.K. (1970) Nature, 227, 680–685.PubMedGoogle Scholar
  11. LudlamC.F.C., SonarS., LeeC.-P., ColemanM., HerzfeldJ., RajBhandaryU.L. and RothschildK.J. (1995) Biochemistry, 34, 2–6.Google Scholar
  12. MacFerrinK.D., TerranovaM.P., SchreiberS.L. and VerdineG.L. (1990) Proc. Natl. Acad. Sci. USA, 87, 1937–1941.Google Scholar
  13. MarionD. and WüthrichK. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  14. McIntoshL.P. and DahlquistF.W. (1990) Q. Rev. Biophys., 23, 1–38.Google Scholar
  15. McIntoshL.P., WandA.J., LowryD.F., RedfieldA.G. and DahlquistF.W. (1990) Biochemistry, 29, 6341–6362.Google Scholar
  16. MiuraK., InoueY., NakamoriH., IwaiS., OhtsukaE., IkeharaM., NoguchiS. and NishimuraS. (1986) Jpn. J. Cancer Res., 77, 45–51.Google Scholar
  17. MutoY., YamasakiK., ItoY., YajimaS., MasakiH., UozumiT., WälchliM., NishimuraS., MiyazawaT. and YokoyamaS. (1993) J. Biomol. NMR, 3, 165–184.Google Scholar
  18. NakanoH., TanakaT., KawarasakiY. and YamaneT. (1994) Biosci. Biotech. Biochem., 58, 631–634.Google Scholar
  19. NevinD.E. and PrattJ.M. (1991) FEBS Lett., 291, 259–263.Google Scholar
  20. PrattJ.M. (1984) In Transcription and Translation (Eds, HamesB.D. and HigginsS.J.), IRL Press, Oxford, pp. 179–209.Google Scholar
  21. ShakaA.J., BarkerP.D. and FreemanR. (1985) J. Magn. Reson., 64, 547–552.Google Scholar
  22. SonarS., LeeC.-P., ColemanM., PatelN., LiuX., MartiT., KhoranaH.G., RajBhandaryU.L. and RothschildK.J. (1994) Nature Struct. Biol., 1, 512–517.Google Scholar
  23. SpirinA.S., BaranovV.I., RyabovaL.A., OvodovS.Y. and AlakhovY.B. (1988) Science, 242, 1162–1164.Google Scholar
  24. StudierF.W. and MoffattB.A. (1986) J. Mol. Biol., 189, 113–130.Google Scholar
  25. TongL., DeVosA.M., MilburnM.V. and KimS.-H. (1991) J. Mol. Biol., 217, 503–516.Google Scholar
  26. YamasakiK., KawaiG., ItoY., MutoY., FujitaJ., MiyazawaT., NishimuraS. and YokoyamaS. (1989) Biochem. Biophys. Res. Commun., 162, 1054–1062.Google Scholar
  27. YamasakiK., MutoY., ItoY., WälchliM., MiyazawaT., NishimuraS. and YokoyamaS. (1992) J. Biomol. NMR, 2, 71–82.Google Scholar
  28. ZawadzkiV. and GrossH.J. (1991) Nucleic Acids Res., 19, 1948.Google Scholar
  29. ZubayG. (1973) Annu. Rev. Genet., 7, 267–287.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1995

Authors and Affiliations

  • Takanori Kigawa
    • 1
  • Yutaka Muto
    • 1
  • Shigeyuki Yokoyama
    • 1
  1. 1.Department of Biophysics and Biochemistry, School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations