Skip to main content
Log in

Climate simulations with the global coupled atmosphere-ocean model ECHAM2/OPYC Part I: present-day climate and ENSO events

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study the global coupled atmosphere-ocean general circulation model ECHAM2/OPYC and its performance in simulating the present-day climate is presented. The model consists of the T21-spectral atmosphere general circulation model ECHAM2 and the ocean general circulation model OPYC with a resolution corresponding to a T42 Gaussian grid, with increasing resolution towards the equator. The sea-ice is represented by a dynamic thermodynamic sea-ice model with rheology. Both models are coupled using the flux correction technique. With the coupled model ECHAM2/OPYC a 210-year integration under present-day greenhouse gas conditions has been performed. The coupled model simulates a realistic mean climate state, which is close to the observations. The model generates several ENSO events without external forcing. Using traditional and advanced (POP-technique) methods these ENSO events have been analyzed. The results are consistent with the “delayed action oscillator” theory. The model simulates both a tropical and an extra-tropical response to ENSO, which are in good agreement with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakan S, Chlond A, Cubasch U, Feichter J, Graf H, Graßll H, Hasselmann K, Kirchner I, Latif M, Roeckner E, Sausen R, Schlese U, Schriever D, Schult I, Schumann U, Sielmann F, Welke W (1991) Climate response to smoke from burning oil wells in Kuwait. Nature 351:367–371

    Google Scholar 

  • Berlage HP (1957) Fluctuations in the general atmospheric circulations of more than one year, their nature and prognostic value. K Ned Meteorol Inst Meded Ver 69

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Google Scholar 

  • Boer GJ, Arpe K, Blackburn M, Déqué M, Gates WL, Hart TL, le Trent H, Roeckner E, Sheinin DA, Simmonds I, Smith RNB, Tokioka T, Wetherald T, Williamson D (1992) Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J Geophys Res 97 D12:12771–12786

    Google Scholar 

  • Bryan K, Manabe S, Pacanowski RC (1975) A global oceanatmosphere climate model. Part II: the ocean circulation. J Phys Oceanogr 5:30–46

    Google Scholar 

  • Cane MA (1983) Oceanographic events during El Niño. Science 222:1189–1195

    Google Scholar 

  • Claussen M, Esch M (1993) Biomes computed from simulated climatologies. Clim Dyn 9:235–243

    Google Scholar 

  • Cubasch U, Hasselmann K, Höck H, Maier-Reimer E, Mikolajewicz U, Sauter BD, Sausen R (1992) Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Clim Dyn 8:55–69

    Google Scholar 

  • Glantz MH, Katz RW, Nicholls N (1991) Teleconnections linking worldwide climate anomalies. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Graf HF, Kirchner I, Robock R, Schult I (1993) Pinatubo eruption winter climate effects: model versus observations. Clim Dyn 9:81–93

    Google Scholar 

  • Graham NE, Ponater M, Barnett TP, Wilde R, Schubert S (1994) On the roles of tropical and mid-latitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J Clim 7:1416–1441

    Google Scholar 

  • Grötzner A, Sausen R, Clausen M (1996) The impact of sub-grid scale sea-ice inhomogeneities on the performance of the atmospheric general circulation model ECHAM. Clim Dyn : submitted

  • Hasselmann K (1988) PIPs and Pops: the reduction of complex dynamical systems using Principal Interaction and Oscillation Patterns. J Geophys Res 93 139:11015–11021

    Google Scholar 

  • Holland DM, Mysak LA, Manak DK, Oberhuber JM (1993) Sensitive study of a dynamic thermodynamic sea ice model. J Geophys Res 98 C2:2561–2586

    Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 106:1433–1451

    Google Scholar 

  • Knutson TR, Manabe S (1994) Impact of increased CO2 on simulated ENSO-like phenomena. Geophys Res Lett 21:2295–2298

    Google Scholar 

  • König W, Kirk E (1991) Investigation of the variability in ECHAM induced by interannually varying SST In: R. Sausen (ed): Large scale atmospheric modelling Report No. 9, Meteorol. Inst. Univ. Hamburg, pp 115–132

  • König W, Sausen R, Sielmann F (1993) Objective identification of cyclones in GCM simulations. J Clim 6:2217–2231

    Google Scholar 

  • Latif M, Sterl A, Maier-Reimer E (1991) On the space-time structure of ENSO. Max-Planck-Institut für Meteorologic, Report No. 74,19 pp (ISSN 0937-1060)

  • Latif M, Sterl A, Maier-Reimer E, Junge M (1993) Climate variability in a coupled GCM. Part I: the Tropical Pacific. J Clim 6:5–21

    Google Scholar 

  • Lau N-C, Philander GH, Nath MJ (1992) Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere. J Clim 5:284–307

    Google Scholar 

  • Lohmann U, Sausen R, Bengtsson L, Cubasch U, Perlwitz J, Roeckner E (1993) The Köppen climate classification as a diagnostic tool for general circulation models. Clim Res 3:177–193

    Google Scholar 

  • Lunkeit F (1993) Simulation der interannualen Variabilität mit einem globalen gekoppelten Atmosphäre-Ozean Modell. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Reihe A, No. 8 (ISSN 0936-949X)

  • Manabe S, Bryan K (1969) Climate calculations with a combined ocean-atmosphere model. J Atmos Sci 26:786–789

    Google Scholar 

  • Manabe S, Stouffer RJ (1979) A CO2-climate sensitivity study with a mathematical model of the global climate. Nature 282:491–493

    Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1975) A global ocean-atmosphere climate model. Part I: the atmospheric circulation. J Phys Oceanogr 5:3–29

    Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1979) A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity. Dyn Atmos Oceans 3:393–426

    Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1990) Transient response of a global ocean atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749

    Google Scholar 

  • Manabe S, Spelman MJ, Stouffer RJ (1992) Transient responses of a coupled ocean atmosphere model to gradual changes of atmospheric CO2 Part II: seasonal response. J Clim 5:105–126

    Google Scholar 

  • McCreary JP, Anderson DLT (1991) An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation. J Geophys Res 96:3123–3150

    Google Scholar 

  • Meehl GA (1990) Seasonal forcing of El Niño-Southern oscillation in a global, coupled ocean-atmosphere GCM. J Clim 3:72–98

    Google Scholar 

  • Meehl GA, Washington WM (1990) CO2 climate sensitivity and snow-sea-ice albedo parameterization in an atmospheric GCM coupled to a mixed layer ocean model. Clim Change 16:283–306

    Google Scholar 

  • Miller A, Cayan D, Barnett T, Graham N, Oberhuber JM (1994) Interdecadal variability of the Pacific Ocean: model response to observed heat flux and wind stress anomalies. Clim Dyn 9:287–302

    Article  Google Scholar 

  • Miller A, Cayan D, Barnett T, Graham N, Oberhuber JM (1995) The 1976–77 climate shift of the Pacific Ocean. Oceanogr (in press)

  • Murphy JM (1995) Transient response of the Hadley Centre coupled ocean-atmospere model to increasing carbon dioxide. Part I: control climate and flux adjustment. J Clim 8:36–56

    Article  Google Scholar 

  • Murphy JM, Mitchell JFB (1995) Transient response of the Hadley Centre coupled ocean-atmospere model to increasing carbon dioxide. Part II: spacial and temporal structure of response. J Clim 8:57–80

    Google Scholar 

  • Neelin JD, Latif M, Alaart MAF, Cane MA, Cubasch U, Gates WL, Gent PR, Ghil M, Gordon C, Lau NC, Mechoso CR, Meehl GA, Oberhuber JM, Philander SGH, Schopf PS, Sperber KR, Sterl A, Tokioka T, Tribbia J, Zebiak SE (1991) Tropical air-sea interaction in general circulation models. Clim Dyn 7:73–104

    Google Scholar 

  • Oberhuber JM, Lunkeit F, Sausen R, Santer BD, Cubasch U (1992) Numerical simulation of the global warming. In: Melli P, Zannetti P (eds) Environmental modelling. Computational Mechanics Publications, Southampton/Boston, pp 243–272

    Google Scholar 

  • Oberhuber JM (1993a) Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnical general circulation model. Part I: model description. J Phys Oceanogr 23:808–829

    Google Scholar 

  • Oberhuber JM (1993b) Simulation of the Atlantic circulation with a coupled sea-ice-mixed layer-isopycnical general circulation model. Part II: model experiment. J Phys Oceanogr 23:830–845

    Google Scholar 

  • Philander SGH (1990) El Niño, La Niña and the Southern Oscillation. Academic Press, New York

    Google Scholar 

  • Philander GH, Pacanowski RC, Lau N-C, Nath MJ (1992) Simulation of ENSO with global atmospheric GCM coupled to a high resolution tropical Pacific ocean GCM. J Clim 5:308–329

    Google Scholar 

  • Ponater M, König W, Sausen R, Sielmann F (1994) Circulation regime fluctuations and their effect on intraseasonal variability in the ECHAM climate model. Tellus 46A:265–285

    Google Scholar 

  • Rasmusson EN, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Sausen R, Cubasch U (1989) A technical guide for the flux correction method. In: Sauser R (ed) Large scale atmospheric modelling, Report No. 4, Meteorol. Inst. Univ. Hamburg, pp 61–71

  • Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean-atmosphere models with flux correction. Clim Dyn 2:145–163

    Google Scholar 

  • Sausen R, Cubasch U, Lunkeit F, Böttinger M, Oberhuber JM, Hasselmann K, Roeckner E, Maier-Reimer E, Podzun R, Mikolajewicz U, Lütgens G, Santer BD, Schriever D (1990) Simulation des transienten CO2-Treibhauseffektes mit gekoppelten Atmosphäre-Ozean-Modellen — Ein vorläufiger Bericht über die Hamburger Experimente. Meteorologisches Institut der Universität Hamburg und Max-Planck-Institut für Meteorologie, Hamburg

    Google Scholar 

  • Sausen R, Voß R, Ponater M (1993) Orographic forcing in ECHAM. Beitr Phys Atmos 66:239–252

    Google Scholar 

  • Sausen R, Schubert S, Dtimenil L (1994) A model of the river runoff for use in coupled atmosphere-ocean models. J Hydrology 155:337–352

    Google Scholar 

  • Schlesinger ME (1988) Physically-based modelling and simulation of climate and climate change. NATO ASI Series, Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled oceanatmosphere model. J Atmos Sci 45:549–566

    Google Scholar 

  • Sperber KR, Hameed S, Gates WL, Potter GL (1987) Southern oscillation simulated in a global climate model. Nature 329:140–142

    Google Scholar 

  • Storch H von, Bruns T, Fischer-Bruns I, Hasselmann K (1988) Principal Oscillation analysis of the 30 to 60 day oscillation in a GCM. J Geophys Res 93 D9:11022–11036

    Google Scholar 

  • Stouffer RJ, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2 Nature 342:660–662

    Google Scholar 

  • Washington WM, Semtner AJ, Meehl GA, Knight DJ, Mayer TA (1980) A general circulation experiment with a coupled atmosphere, ocean and sea ice model. J Phys Oceanogr 10:1887–1908

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunkeit, F., Sausen, R. & Oberhuber, J.M. Climate simulations with the global coupled atmosphere-ocean model ECHAM2/OPYC Part I: present-day climate and ENSO events. Climate Dynamics 12, 195–212 (1996). https://doi.org/10.1007/BF00211618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211618

Keywords

Navigation