Space Science Reviews

, Volume 21, Issue 3, pp 329–354 | Cite as

The Low Energy Charged Particle (LECP) experiment on the Voyager spacecraft

  • S. M. Krimigis
  • T. P. Armstrong
  • W. I. Axford
  • C. O. Bostrom
  • C. Y. Fan
  • G. Gloeckler
  • L. J. Lanzerotti


The Low Energy Charged Particle (LECP) experiment on the Voyager spacecraft is designed to provide comprehensive measurements of energetic particles in the Jovian, Saturnian, Uranian and interplanetary environments. These measurements will be used in establishing the morphology of the magnetospheres of Saturn and Uranus, including bow shock, magnetosheath, magnetotail, trapped radiation, and satellite-energetic particle interactions. The experiment consists of two subsystems, the Low Energy Magnetospheric Particle Analyzer (LEMPA) whose design is optimized for magnetospheric measurements, and the Low Energy Particle Telescope (LEPT) whose design is optimized for measurements in the distant magnetosphere and the interplanetary medium. The LEMPA covers the energy range from ∼10 keV to > 11 MeV for electrons and from ∼15 keV to ≳ 150 MeV for protons and heavier ions. The dynamic range is ∼0.1 to ≳ 1011 cm−2 sec−1 sr−1 overall, and extends to 1013 cm−2 sec−1 sr−1 in a current mode operation for some of the sensors. The LEPT covers the range ∼0.05 ≤ E ≳ 40 MeV/nucleon with good energy and species resolution, including separation of isotopes over a smaller energy range. Multi-dE/dx measurements extend the energy and species coverage to 300–500 MeV/nucleon but with reduced energy and species resolution. The LEPT employs a set of solid state detectors ranging in thickness from 2 to ∼2450 μ, and an arrangement of eight rectangular solid state detectors in an anticoincidence cup. Both subsystems are mounted on a stepping platform which rotates through eight angular sectors with rates ranging from 1 revolution per 48 min to 1 revolution per 48 sec. A ‘dome’ arrangement mounted on LEMPA allows acquisition of angular distribution data in the third dimension at low energies. The data system contains sixty-two 24-bit sealers accepting data from 88 separate channels with near 100% duty cycle, a redundant 256-channel pulse height analyzer (PHA), a priority system for selecting unique LEPT events for PHA analysis, a command and control system, and a fully redundant interface with the spacecraft. Other unique features of the LECP include logarithmic amplifiers, particle identifiers, fast (∼15 ns FWHM) pulse circuitry for some subsystems, inflight electronic and source calibration and several possible data modes.


Solid State Detector Pulse Height Analyzer Angular Sector Species Resolution Trap Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, A. F. O'D.: 1965 The Planet Uranus, Faber and Faber, London.Google Scholar
  2. Alfvén, H. and Arrhenius, G.: 1976, Evolution of the Solar System, NASA SP-345, 1976.Google Scholar
  3. Armstrong, T. P. and Krimigis, S. M.: 1973, Proc. 13th International Cosmic Ray Conference 2, 1504–1509.Google Scholar
  4. Axford, W. I.: 1972 in Solar Wind, ed. C. P. Sonnett, P. J. Coleman, Jr. and J. M. Wilcox, NASA-SP-308, 609.Google Scholar
  5. Brown, R. A.: 1973, Proc. Copernicus Symp. IV, IAU Symposium, No. 65, Torum, Poland.Google Scholar
  6. Brown, L. W.: 1975, Astrophys. J. 198, L89, 1975.Google Scholar
  7. Cameron, A. G. W.: 1973, Space Sci. Rev. 14, 383.Google Scholar
  8. Chenette, D. L., Conlon, T. F., and Simpson, J. A.: 1974, J. Geophys. Res. 79, 3551.Google Scholar
  9. Dolginov, Sh. Sh., Erashenko, E. G., and Zhuzgov, L. M.: 1972, Dokl. Akad. Nauk S.S.S.R. 207, 1296.Google Scholar
  10. Duggal, S. P. and Pomerantz, M. A.: 1973, J. Geophys. Res. 78, 7205.Google Scholar
  11. Fillius, R. W. and McIlwain, C. E.: 1974, J. Geophys. Res. 79, 3589.Google Scholar
  12. Fisk, L. A., Kozlovsky, B., and Ramaty, R.: 1974, Astrophys. J. (Lett.), 190, L35.Google Scholar
  13. Innanen, W. G. and Van Allen, J. A.: 1973, J. Geophys. Res. 78, 1019.Google Scholar
  14. Kennel, C. F.: 1973, Space Sci. Rev. 14, 511.Google Scholar
  15. Klecker, B., Hovestadt, D., Gloeckler, G., and Fan, C. Y.: 1975, Proc. 14th International Cosmic Ray Conference, Paper SP 2.2-8, Munich.Google Scholar
  16. Krimigis, S. M., Kohl, J. W., and Armstrong, T. P.: 1975a, Geophys. Res. Lett. 2, 457.Google Scholar
  17. Krimigis, S. M., Sarris, E. T., and Armstrong, T. P.: 1975b, Geophys. Res. Lett. 2, 561.Google Scholar
  18. Mendis, D. A. and Axford, W. I.: 1974, Annual Rev. Earth Planet. Sci. 2, 419.Google Scholar
  19. Ness, N. F., Behannon, K. W., Lepping, R. P., and Whang, Y. C.: 1975, J. Geophys. Res. 80, 2708.Google Scholar
  20. Peletier, D. P., Gary, S. A., and Hogrefe, A. F.: 1977, IEEE Trans. Nucl. Sci., NS-24, 795.Google Scholar
  21. Peletier, D. P.: 1975, IEEE Trans. Nucl. Sci. NS-22, 1.Google Scholar
  22. Roelof, E. C. and Krimigis, S. M.: 1973, J. Geophys. Res. 78, 5375.Google Scholar
  23. Roelof, E. C., Keath, E. P., Bostrom, C. O., and Williams, D. J.: 1976, J. Geophys. Res. 80, 2304.Google Scholar
  24. Rosenbauer, H., Grunwaldt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N.: 1975. J. Geophys. Res. 80, 2723.Google Scholar
  25. Sarris, E. T., Krimigis, S. M., and Armstrong, T. P.: 1976, J. Geophys. Res. 81, 2341.Google Scholar
  26. Siscoe, G. L.: 1975, Icarus, 24, 311.Google Scholar
  27. Smith, E. J., Davis, L., Jr., Jones, D. E., Coleman, P. J., Jr., Colburn, D. S., Dyal, P., Sonett, C. P., and Fandsen, A. M. A.: 1974, J. Geophys. Res. 79, 3501.Google Scholar
  28. Smith, E. J. and Wolfe, J. H.: 1976, Geophys. Res. Lett. 3, 137.Google Scholar
  29. Thomsen, M. F. and Van Allen, J. A.: 1976, Astrophys. J. 206, 599.Google Scholar
  30. Teegarden, B. J., McDonald, F. B., Trainor, J. H., Webber, W. R., and Roelof, E. C.: 1974, J. Geophys. Res. 79, 3615.Google Scholar
  31. Wibberenz, G., Lanzerotti, L. J., and Venkatesan, D.: 1976, J. Geophys. Res. 81, 5807.Google Scholar
  32. Williams, D. J.: 1975 in V. Formisano (ed.), The Magnetospheres of Earth and Jupiter, D. Reidel, Dordrecht, Holland, p. 161.Google Scholar
  33. Williams, D. J. and Lyons, L. R.: 1974, J. Geophys. Res. 79, 4195.Google Scholar
  34. Wolfe, J. H., Mihalov, J. D., Collard, H. R., McKibbin, D. D., Frank, L. A., and Intriligator, D. S.: 1974, J. Geophys. Res. 79, 3489.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • S. M. Krimigis
    • 1
  • T. P. Armstrong
    • 2
  • W. I. Axford
    • 3
  • C. O. Bostrom
    • 4
  • C. Y. Fan
    • 5
  • G. Gloeckler
    • 6
  • L. J. Lanzerotti
    • 7
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  2. 2.Department of PhysicsUniversity of KansasLawrenceUSA
  3. 3.Max-Planck Institute for AgronomyKatlenburg-LindauWest Germany
  4. 4.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  5. 5.Department of PhysicsUniversity of ArizonaTucsonUSA
  6. 6.Department of Physics & AstronomyUniversity of MarylandCollege ParkUSA
  7. 7.Bell LaboratoriesMurray HillUSA

Personalised recommendations