Skip to main content
Log in

Rat jejunal basolateral membrane Cl/HCO3 exchanger is modulated by a Na-sensitive modifier site

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A Cl/HCO3 exchanger mediates HCO3 extrusion across rat jejunal basolateral membrane. Previous studies demonstrated that anion antiport activity is positively affected by Na, but evidence was given that this cation is not translocated by the carrier protein. Basolateral membranes isolated from rat jejunum were used to give more insight on Na effect. Uptake studies, performed together with vesicle sidedness determinations, indicated that the greatest stimulation of Cl-dependent HCO3 uptake occurs when Na is present at both vesicle surfaces. The kinetic dependence of Cl/HCO3 exchange on equal intra- and extravesicular Na concentration showed a hyperbolic relationship, and the calculated kinetic parameters were V max=0.153 ± 0.006 nmol mg protein-1 sec-1, K m =23.0 Mm. Ion replacement studies indicated that Na can be partially substituted only by Li and not by other monovalent cations. Results of this study suggest that Na could act as a nonessential activator of the Cl/HCO3 exchanger. A possible role of the Na-sensitive modifier site in the physiology of jejunal enterocyte is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern, R.J., Chambers, M. 1987. Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and -independent modes. J. Gen. Physiol. 89:581–598

    Google Scholar 

  2. Aronson, P.S. 1985. Kinetic properties of the plasma membrane Na+-H+ exchanger. Annu. Rev. Physiol. 47:545–560

    Google Scholar 

  3. Boron, W.F. 1985. Intracellular pH-regulating mechanism of the squid axon. Relation between the external Na+ and HCO3 - dependences. J. Gen. Physiol. 85:325–345

    Google Scholar 

  4. Boumendil-Podevin, E.F., Podevin, R.A. 1983. Isolation of basolateral and brush border membrane from the rabbit kidney cortex. Vesicle integrity and membrane sidedness of the basolateral fraction. Biochim. Biophys. Acta 735:86–94

    Google Scholar 

  5. Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of probes. Biochim. Biophys. Acta 515:239–302

    Google Scholar 

  6. Chow, A., Dobbins, J.W., Aronson, P.S., Igarashi, P. 1992. cDNA cloning and localization of a band 3-related protein from ileum. Am. J. Physiol. 263:G345-G352

    Google Scholar 

  7. Del Castillo, J.R., Marin, R., Proverbio, T., Proverbio, F. 1982. Partial characterization of the ouabain-insensitive, Na+-stimulated ATPase activity of kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 692:61–68

    Google Scholar 

  8. Grassl, S.M., Holohan, P.D., Ross, C.R. 1987. C1--HCO3 - exchange in rat renal basolateral membrane vesicles. Biochim. Biophys. Acta 905:475–484

    Google Scholar 

  9. Grinstein, S., Rotin, D., Mason, M.J. 1989. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim. Biophys. Acta 988:73–97.

    Google Scholar 

  10. Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J. Membrane Biol. 71:227–240

    Google Scholar 

  11. Halligan, R.D., Shelat, H., Kahn, A.M. 1991. Na+-independent C1--HCO3 - exchange in sarcolemmal vesicles from vascular smooth muscle. Am. J. Physiol. 260:C347-C354

    Google Scholar 

  12. Hoffmann, E.K. 1986. Anion transport systems in the plasma membrane of vertebrate cells. Biochim. Biophys. Acta 864:1–31

    Google Scholar 

  13. Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–382

    Google Scholar 

  14. Kahn, A.M., Cragoe, E.J., Jr., Allen, J.C., Halligan, R.D., Shelat, H. 1990. Na+-H+ and Na+-dependent Cl--HCO3 - exchange control pHi in vascular smooth muscle. Am. J. Physiol. 259:C134-C143

    Google Scholar 

  15. Kinne, R., Hannafin, J.A., Konig, B. 1985. Role of the NaCl-KCl cotransport system in active chloride absorption and secretion. Ann. NY Acad. Sci. 456:198–206

    Google Scholar 

  16. Kinsella, J.L., Holohan, P.D., Pessah, N.I., Ross, C.R. 1979. Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochim. Biophys. Acta 552:468–477

    Google Scholar 

  17. Knickelbein, R., Aronson, P.S., Schron, C.M., Seifter, J., Dobbins, J.W. 1985. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am. J. Physiol. 249:G236-G245

    Google Scholar 

  18. Liedtke, C.M., Hopfer, U. 1977. Anion transport in brush border membranes isolated from rat small intestine. Biochem. Biophys. Res. Commun. 76:579–585

    Google Scholar 

  19. Liu, S., Piwnica-Worms, D., Lieberman, M. 1990. Intracellular pH regulation in cultured embryonic chick heart cells. Na+-dependent Cl-/HCO3 - exchange. J. Gen. Physiol. 96:1247–1269

    Google Scholar 

  20. Mandla, S., Scriver, C.R., Tenenhouse, H.S. 1988. Decreased transport in renal basolateral membrane vesicles from hypertaurinuric mice. Am. J. Physiol. 255:F88-F95

    Google Scholar 

  21. Marin, T., Proverbio, T., Proverbio, F. 1986. Inside-out basolateral plasma membrane vesicles from rat kidney proximal tubular cells. Biochim. Biophys. Acta 858:195–201

    Google Scholar 

  22. Mason, M.J., Smith, J.D., De Jesus Garcia Soto, J., Grinstein, S. 1989. Internal pH-sensitive site couples Cl-HCO3 exchange to Na-H antiport in lymphocytes. Am. J. Physiol. 256:C428-C433

    Google Scholar 

  23. Mugharbil, A., Knickelbein, R.G., Aronson, P.S., Dobbins, J.W. 1990. Rabbit ileal brush-border membrane Cl-HCO3 exchanger is activated by an internal pH-sensitive modifier site. Am. J. Physiol. 259:G666-G670

    Google Scholar 

  24. Murer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604

    Google Scholar 

  25. Nakhoul, N.L., Chen, L.K., Boron, W.F. 1990. Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl-HCO3 exchange and Na-HCO3 cotransport. Am. J. Physiol. 258:F371-F381

    Google Scholar 

  26. Olsnes, S., Tonnessen, T.I., Ludt, J., Sandvig, K. 1987. Effect of intracellular pH on the rate of Cl uptake and efflux in different mammalian cell lines. Biochemistry 26:2778–2789

    Google Scholar 

  27. Orsenigo, M.N., Tosco, M., Esposito, G., Faelli, A. 1985. The basolateral membrane of rat enterocyte: its purification from brush border contamination. Anal. Biochem. 144:577–583

    Google Scholar 

  28. Orsenigo, M.N., Tosco, M., Faelli, A. 1991. Cl/HCO3 exchange in the basolateral membrane domain of rat jejunal enterocyte. J. Membrane Biol. 124:13–19

    Google Scholar 

  29. Orsenigo, M.N., Tosco, M., Faelli, A. 1992. Basolateral Cl-/HCO3-exchange in rat jejunum: evidence from H14CO3 - uptake in membrane vesicles. Biochim. Biophys. Acta 1108:140–144

    Google Scholar 

  30. Orsenigo, M.N., Tosco, M., Zoppi, S., Faelli, A. 1990. Characterization of basolateral membrane Na/H antiport in rat jejunum. Biochim. Biophys. Acta 1026:64–68

    Google Scholar 

  31. Parsons, D.S. 1956. The absorption of bicarbonate-saline solutions by the small intestine and colon of the white rat. Q. J. Exp. Physiol. 41:410–420

    Google Scholar 

  32. Preisig, P.A., Alpern, R.J. 1989. Basolateral membrane H-OH-HCO3 transport in the proximal tubule. Am. J. Physiol. 256:F751-F765

    Google Scholar 

  33. Putnam, R.W. 1990. pH regulatory transport systems in a smooth muscle-like cell line. Am. J. Physiol. 258:C470-C479

    Google Scholar 

  34. Sasaki, S., Yoshiyama, N. 1988. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloridebicarbonate exchange. J. Clin. Invest. 81:1004–1011

    Google Scholar 

  35. Schoner, W., von Ilberg, C., Kramer, R., Seubert, W. 1967. On the mechanism of Na-and K-stimulated hydrolysis of adenosine triphosphate. Purification and properties of a Na+- and K+-activated ATPase from ox brain. Eur. J. Biochem. 1:334–343

    Google Scholar 

  36. Segel, I.H. 1975. Multisite and allosteric enzymes. In: Enzyme Kinetics, pp. 346–403. Wiley-Interscience, New York.

    Google Scholar 

  37. Skou, J.C. 1988. Overview: the Na,K-pump. Methods Enzymol. 156:1–25

    Google Scholar 

  38. Tosco, M., Orsenigo, M.N., Esposito, G., Faelli, A. 1988. Na+/H+ exchange mechanism in the basolateral membrane of the rat enterocyte. Biochim. Biophys. Acta 944:473–476

    Google Scholar 

  39. Tosco, M., Orsenigo, M.N., Faelli, A. 1993. Basolateral Cl/HCO3 exchange in rat jejunum: the effect of sodium. J. Membrane Biol. 135:129–135

    Google Scholar 

  40. Turner, R.J., George, J.N. 1988. Cl--HCO3 - exchange is present with Na+-K+-Cl- cotransport in rabbit parotid acinar basolateral membranes. Am. J. Physiol. 254:C391-C396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orsenigo, M.N., Tosco, M. & Faelli, A. Rat jejunal basolateral membrane Cl/HCO3 exchanger is modulated by a Na-sensitive modifier site. J. Membarin Biol. 138, 47–53 (1994). https://doi.org/10.1007/BF00211068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211068

Key words

Navigation