Skip to main content
Log in

A study of long-term climate change in a simple seasonal nonlinear climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Solar radiation cycles, earth-orbital changes, and continental drift drive long to very long term (103−106 years) climatic changes. Lin and North used the stationary solutions of a simple energy balance model (EBM) to study the equilibrium climatic stages. In this paper, we study time dependent solutions and, in particular, transition processes. We make use of two time scales: a seasonal cycle (fast variation) and a long term time change (slow variation). Variations over short time scales are solved using a Fourier transform in time and long term variations are studied using a 4th order Runge-Kutta method. The energy balance equation is a parabolic type equation and it is well posed. Climate changes depend mainly on external forcing and the state of the climate is determined by the slow time scale forcing. In other words, transitions from one climate stage (snow-covered) to another (snow-free) at bifurcation points are monotonic, despite 20% to 50% shortperiod random fluctuations in the solar energy. This smooth transition is especially noticeable when the land bands lie close to the north pole (70° N to 90° N) or at high latitudes (50° N to 75° N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustsson T, Ramanathan V (1976) A radiative-convective model study of the CO2 climate problem. J Atmos Sci 34:448–451

    Google Scholar 

  • Bhattacharya K, Ghil M, Vulis IL (1982) Internal variability of an energy-balance model with delayed albedo effects. J Atmos Sci 39:1747–1773

    Google Scholar 

  • Birchfield GE, Weertman J (1978) A note on the spectral response of a model continental ice sheet. J Geophys Res 83C:4123–4125

    Google Scholar 

  • Crowley T, North GR (1988) Abrupt climate change and extinction events in earth history. Sciences 240:996–1002

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Langway CC Jr (1971) Climatic record revealed by Camp-Century ice-core. In: Turekian K (ed) The late Cenozoic glacial ages. Yale University Press, pp 267–306

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth's orbit: pacemaker of the ice ages. Sciences 194:1121–1132

    Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. Enslow Publ Short Hills, NJ USA

    Google Scholar 

  • Le Treut H, Ghil M (1983) Orbital forcing, climatic interactions and glaciation cycles. J Geophys Res 88c:5167–5190; 8623

    Google Scholar 

  • Lin RQ, North GR (1990) A study of abrupt climate change in a simple nonlinear climate model. Clim Dyn 4:253–261

    Google Scholar 

  • Mengel JG, Short DA, North GR (1988) Seasonal snowline instability in an energy balance model. Clim Dyn 2:127–131

    Google Scholar 

  • North GR, Coakley JA (1979) Difference between seasonal and mean annual energy balance model calculations of climate and climate sensitivity. J Atmos Sci 36:1189–1204

    Google Scholar 

  • North J, Mengel JG, Short DA (1983) Simple energy balance model resolving the seasons and the continents: application to the astronomical theory of the ice ages. J Geophys Res 88:6576–6586

    Google Scholar 

  • North GR (1984) The small ice cap instability in diffusive climate model. J Atmos Sci 41:3390–3395

    Google Scholar 

  • Saltzman B, Sutera A, Evenson A (1981) Structural stochastic stability of a simple auto-oscillatory climatic feedback system. J Atmos Sci 38:494–503

    Google Scholar 

  • Short DA, North GR, Bess TD, Smith GL (1984) Infrared parameterization and simple climate models. J Clim Appl Meteorol 23:1222–1233

    Google Scholar 

  • Tsonis AA, Elsner JB (1990) Multiple attractors, fractal basins and long term climate dynamics. Contrib Atmos Phys 63:171–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, R.Q., Kreiss, H., Kuang, W.J. et al. A study of long-term climate change in a simple seasonal nonlinear climate model. Climate Dynamics 6, 35–41 (1991). https://doi.org/10.1007/BF00210580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210580

Keywords

Navigation