Journal of Paleolimnology

, Volume 8, Issue 1, pp 27–47 | Cite as

Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective environmental assessment

  • Sushil S. Dixit
  • Brian F. Cumming
  • H. J. B. Birks
  • John P. Smol
  • John C. Kingston
  • Allen J. Uutala
  • Donald F. Charles
  • Keith E. Camburn


Detrended canonical coreespondence analysis (DCCA) was used to examine the relationships between diatom species distributions and environmental variables from 62 drainage lakes in the Adirondack region, New York (USA). The contribution of lakewater pH, Alm (monomeric Al), NH4, maximum depth, Mg, and DOC (dissolved organic carbon) were statistically significant in explaining the patterns of variation in the diatom species composition. Twenty-three and sixteen diatom taxa were identified as potential indicator species for pH and Alm, respectively (i.e. a taxon with a strong statistical relationship to the environmental variable of interest, a well defined optimum, and a narrow tolerance to the variable of interest). Using weighted-averaging regression and calibration, predictive models were developed to infer lakewater pH (r2=0.91), Alm (r2=0.83), DOC (dissolved organic carbon) (r2=0.64), and ANC (acid neutralizing capacity; r2=0.90). These variables are of key importance in understanding watershed acidification processes. These predictive models have been used in the PIRLA-II (Paleoecological Investigation of Recent Lake Acidification-II) project to answer policy-related questions concerning acidification, recovery, and fisheries loss.

Key words

Diatoms Adirondack Park detrended canonical correspondence analysis canonical correspondence analysis weighted-averaging lake acidification pH monomeric aluminum dissolved organic carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, J. P., D. P. Bernard, S. W. Christensen & M. J. Sale, 1990. Biological effects of changes in surface water acidbase chemistry. State-of Science/Technology Report 13. National Acid Precipitation Program, Washington, D.C.Google Scholar
  2. Battarbee, R. W., 1973. A new method for the estimation of absolute microfossil numbers, with special reference to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  3. Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling (eds), 1990. Palaeolimnology and Lake Acidification. Phil. Trans. r. Soc. Lond. B 327: 223–445.Google Scholar
  4. Birks, H. J. B., S. Juggins & J. M. Line, 1990a. Lake surfacewater chemistry reconstructions from palaeolimnological data. In B. J.. Mason (ed.), The Surface Waters Acidification Programme. Cambridge University Press: 301–313Google Scholar
  5. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990b. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–278.Google Scholar
  6. Camburn, K. E., J. C. Kingston & D. F. Charles (eds), 1984–86. PIRLA Diatom Iconograph. Report No. 3. PIRLA Unpublished Report Series, 53 photographic plates, 1059 figures. Dept. of Biology, Indiana Univ., Bloomington, IN.Google Scholar
  7. Campbell, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. aquat. Sci. 42: 2034–2049.Google Scholar
  8. Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.Google Scholar
  9. Charles, D. F. & J. P. Smol, 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnol. Oceanogr. 33: 1451–1462.Google Scholar
  10. Charles, D. F. & J. P. Smol, 1990. The PIRLA II project: Regional assessment of lake acidification trends. Verh. int. Ver. Limnol. 24: 474–480.Google Scholar
  11. Charles, D. F. & D. R. Whitehead, 1986. The PIRLA Project: Paleoecological Investigation of Recent Lake Acidification. Hydrobiologia 143: 13–20.Google Scholar
  12. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead, & R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol. 3: 195–241.Google Scholar
  13. Cumming, B. F., J. P. Smol, J. C. Kingston, S. S. Dixit, A. J. Uutala & D. F. Charles, 1990. Paleolimnological variability. Appendix 1 In T. J. Sullivan, M. J. Small, J. C. Kingston, B. F. Cumming, S. S. Dixit, J. P. Smol, J. A. Bernert, D. R. Thomas & A. J. Uutala. Historical changes in surface water acid-base chemistry in response to acidic depostion. State-of Science/Technology Report 11. National Acid Precipitation Program, Washington, D.C.; A1-A6 pp.Google Scholar
  14. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Selle, 1992a. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Can. J. Fish. aquat. Sci. 49: 128–141.Google Scholar
  15. Cumming, B. F., J. P. Smol & H. J. B. Birks, 1992b. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to measured environmental variables. J. Phycol. 28: 162–178.Google Scholar
  16. Cushing, E. J. & H. E. Wright Jr, 1965. Hand operated piston corers for lake sediments. Ecology 46: 380–384.Google Scholar
  17. Dixit, S. S., A. S. Dixit & J. P. Smol, 1991. Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.Google Scholar
  18. Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environ. Sci. Technol. 26: 22–33.Google Scholar
  19. Driscoll, C. T. & R. M. Newton, 1985. Chemical characteristics of Adirondack lakes. Envir. Sci. Technol. 19: 1018–1024.Google Scholar
  20. Driscoll, C. T., R. M. Newton, C. P. Gubala, J. P. Baker & S. W. Christensen, 1991. Adirondack Mountains. In D. F. Charles (ed.), Acidic Deposition and Aquatic Ecosystems: Regional Case Studies. Springer-Verlag, New York.Google Scholar
  21. Gensemer, R. W., 1990. Role of aluminum and growth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var. americana (Bacillariophyceae). J. Phycol. 26: 250–258.Google Scholar
  22. Gensemer, R. W., 1991. The effect of pH and aluminum on the growth of the acidophilic diatom Asterionella ralfsii var. americana. Limnol. Oceanogr. 36: 123–131.Google Scholar
  23. Gensemer, R. W. & S. S. Kilham, 1984. Growth rates of five freshwater algae in well-buffered acidic media. Can. J. Fish. aquat. Sci. 41: 1240–1243.Google Scholar
  24. Gherini, S. A., R. A. Munson, E. Altwicker, R. April, C. Chen, N. Clesceri, C. Cronan, C. Driscoll, R. J. Johannes, R. Newton, N. Perers & C. Schofield, 1989. Regional Integrated Lake-Watershed Acidification Study (RILWAS): Summary of major findings. EPRI RP-2174–1. Electric Power Research Institute. Palo Alto, CA.Google Scholar
  25. Glew, J. R., 1989. A new trigger mechanism for sediment samplers. J. Paleolimnol. 2: 241–243.Google Scholar
  26. Hill, M. O., 1973. diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  27. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis, and improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  28. Isachsen, Y. W. & D. W. Fisher, 1990. Geologic map of New York, Adirondack sheet. State Education Department, University of the State of New York, Albany, NY.Google Scholar
  29. Kanciruk, P., J. M. Eilers, R. A. McCord, D. H. Landers, D. F. Brakke & R. A. Linthurst, 1986. Characteristics of lakes in the Eastern United States. Volume III. Data compendium of site characteristics and chemical variables. EPA/600/4–86/007. U.S. Environmental Protection Agency. Washington, DC; 439 pp.Google Scholar
  30. Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., Lond. B 327: 279–288.Google Scholar
  31. Kingston, J. C., H. J. B. Birks, A. J. Uutala, B. F. Cumming & J. P. Smol, 1992. Assessing trends in fishery resources and lake water aluminum from paleolimnological analyses of siliceous algae. Can J. Fish aquat. Sci. 49: 116–127.Google Scholar
  32. Kretser, W., J. Gallagher & J. Nicolette, 1989. Adirondack Lakes Study 1984–1987: an evaluation of fish communities and water chemistry. Adirondack Lakes Survey Corporation, Ray Brook, NY; 437 pp.Google Scholar
  33. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, unpublished. WACALIB 3.10., University of Cambridge Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, U.K., Agricultural Mathematics Group, Wageningen, Box 100, 6700 AC Wageningen, The Netherlands, and Botanical Institute, University of Bergen, N-5007 Bergen, Norway.Google Scholar
  34. Linthurst, R. A., D. H. Landers, J. M. Eilers, D. F. Brakke, W. S. Overton, E. P. Meier & R. E. Crowe, 1986. Characteristics of Lakes in the Eastern United States. Volume 1. Population Descriptions and Physico-Chemical Relationships. EPA/600/4–86/700, U.S. Environmental Protection Agency, Washington, DC. 275 pp.Google Scholar
  35. Muniz, I. P. & H. Leivestad, 1980. Toxic effects of aluminum on the brown trout, Salmo trutta. In D. Drabløs & A. Tollan (eds.), Ecological impact of acid precipitation. SNSF Project, Oslo.Google Scholar
  36. Newton, R. M. & C. T. Driscoll, 1990. Classification of ALSC lakes. In Adirondack Lakes Survey: An Interpretive Analysis of Fish Communities and Water Chemistry, 1984–1987. Adirondack Lakes Survey Corporation, Ray Brook, New York: 2–70 to 2–116.Google Scholar
  37. Pillsbury, R. W. & J. C. Kingston, 1990. The pH-independent effects of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia 194: 225–233.Google Scholar
  38. Schofield, C. L., 1976. Acidification of Adirondack lakes by atmospheric precipitation. Extent and magnitude of the problem. Final Report, Project F-28-R. New York Department of Environmental Conservation, Albany, NY.Google Scholar
  39. Smith, A., 1990. The ecophysiology of epilithic diatom communities of acid lakes in Galloway, southwest Scotland. Phil. Trans. r. Soc., Lond. B 327: 251–256.Google Scholar
  40. Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.Google Scholar
  41. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee, 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.Google Scholar
  42. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Water Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry data-set. ENSIS Publishing, London, 86 pp.Google Scholar
  43. Sullivan, T. J., D. F. Charles, J. P. Smol, B. F. Cumming, A. R. Selle, D. R. Thomas, J. A. Bernert & S. S. Dixit, 1990. Quantification of changes in lakewater chemistry in response to acidic deposition. Nature 345: 54–58.Google Scholar
  44. Sullivan, T. J., R. S. Turner, D. F. Charles, B. F. Cumming, J. P. Smol, C. L. Schofield, C. T. Driscoll, H. J. B. Birks, A. J. Uutala, J. C. Kingston, S. S. Dixit, J. A. Bernert & P. F. Ryan, 1992. Use of Historical assessment for evaluation of process-based model projections of future environmental change: lake acidification in the Adirondack Mountains New York, U.S.A. Envir. Pollut. 77: 253–262.Google Scholar
  45. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1178.Google Scholar
  46. ter Braak, C. J. F., 1987a. Ordination. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 91–173.Google Scholar
  47. ter Braak, C. J. F., 1987b. Calibration. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 79–90.Google Scholar
  48. ter Braak, C. J. F., 1988a. CANOCO—A FORTRAN program for canonical community ordination by [partial detrended] [canonical] correspondence analysis, principal components analysis redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands. Technical Report LWA-88–02, Wageningen; 95 pp.Google Scholar
  49. ter Braak, C. J. F. 1988b. Partial canonical correspondence analyses. In H. H. Bock (ed.), Classification and related methods of data analysis. North Holland, Amsterdam; 551–558.Google Scholar
  50. ter Braak, C. J. F., 1990a. Update Notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands; 35 pp.Google Scholar
  51. ter Braak, C. J. F., 1990b. CANOCO-version 3.10. Unpublished Computer Program, Agricultural Mathematics Group, 6700 AC Wageningen, The Netherlands.Google Scholar
  52. ter Braak, C. J. F. & C. W. N. Looman, 1987. Regression. In R. H. G. Jongman, C. J. F. ter Braak & O. F. R. van Tongeren (eds.), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands; 29–77.Google Scholar
  53. ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Sushil S. Dixit
    • 1
  • Brian F. Cumming
    • 1
  • H. J. B. Birks
    • 2
  • John P. Smol
    • 1
  • John C. Kingston
    • 1
  • Allen J. Uutala
    • 1
  • Donald F. Charles
    • 3
  • Keith E. Camburn
    • 4
  1. 1.Paleoecological Environmental Assessment and Research Lab (PEARL), Department of BiologyQueen's UniversityKingstonCanada
  2. 2.Botanical InstituteUniversity of BergenBergenNorway
  3. 3.Department of BiologyIndiana UniversityBloomingtonUSA
  4. 4.GastoniaUSA

Personalised recommendations