Climate Dynamics

, Volume 9, Issue 2, pp 81–93 | Cite as

Pinatubo eruption winter climate effects: model versus observations

  • H-F Graft
  • I Kirchner
  • A Robock
  • I Schult
Article

Abstract

Large volcanic eruptions, in addition to the well-known effect of producing global cooling for a year or two, have been observed to produce shorterterm responses in the climate system involving non-linear dynamical processes. In this study, we use the ECHAM2 general circulation model forced with stratospheric aerosols to test some of these ideas. Run in a perpetual-January mode, with tropical stratospheric heating from the volcanic aerosols typical of the 1982 El Chichón eruption or the 1991 Pinatubo eruption, we find a dynamical response with an increased polar night jet in the Northern Hemisphere (NH) and stronger zonal winds which extend down into the troposphere. The Azores High shifts northward with increased tropospheric westerlies at 60°N and increased easterlies at 30°N. Surface temperatures are higher both in northern Eurasia and North America, in agreement with observations for the NH winters of 1982–83 and 1991–92 as well as the winters following the other 10 largest volcanic eruptions since 1883.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakan S, Chlond A, Cubasch U, Feichter J, Graf H, Grassl H, Hasselmann K, Kirchner I, Latif M, Roeckner E, Sausen R, Schlese U, Schriever D, Schult I, Schumann U, Sielmann F, Welke W (1991) Climate response to smoke from the burning oil wells in Kuwait. Nature 351:367–371Google Scholar
  2. Bakan S (1982) Strahlungsgetriebene Zellularkonvektion in Schichtwolken. Dissertation, University of Hamburg, GermanyGoogle Scholar
  3. Bartels J (1935) Random fluctuations, persistence, and quasipersistence in geophysical and cosmical periodicities. Terr Magn Atmos Electron 40:1–60Google Scholar
  4. Boville BA (1986) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atmos Sci 41:1132–1142Google Scholar
  5. Bluth GJS, Doiron SD, Krueger AJ, Walter LS, Schnetzler CC (1992) Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154Google Scholar
  6. Cress A, Schonwiese C-D (1990) Vulkanische Einflüsse auf die bodennahe und stratosphärische Lufttemperatur der Erde. Ber Inst f Meteorol Geophysik Univ Frankfurt/Main 82, 148 ppGoogle Scholar
  7. Geller MA, Alpert JC (1980) Planetary wave coupling between the troposphere and the middle atmosphere as a possible sunweather mechanism. J Atmos Sci 37:1197–1215Google Scholar
  8. Graf HF (1986) On El Niño/Southern Oscillation and Northern Hemispheric temperature. Gerlands Beitr Geophys 95:63–75Google Scholar
  9. Graf HF (1992) Arctic radiation deficit and climate variability. Clim Dyn 7:19–28Google Scholar
  10. Graf HF, Perlwitz J, Kirchner I (1993) Northern Hemisphere tropospheric mid-latitude circulation after violent volcanic eruptions. Geophys Res Lett (in press)Google Scholar
  11. Groismann PY (1985) Regional climatic consequences of volcanic eruptions. Meteorol Hydrol 4:39–45 (in Russian)Google Scholar
  12. Groisman PY (1992) Possible regional consequences of the Pinatubo eruption: an empirical approach. Geophys Res Lett 19:1603–1606Google Scholar
  13. Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218Google Scholar
  14. Jäger H (1992) The Pinatubo cloud observed by Lidar over Garmisch-Partenkirchen. Geophys Res Lett 19:191–194Google Scholar
  15. Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Clim 1:654–660Google Scholar
  16. Jones PD, Wigley TML, Folland CK, Parker DE, Angel JK, Lebedeff S, Hansen JE (1988) Evidence for global warming in the past decade. Nature 332:790Google Scholar
  17. Lacis A, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610Google Scholar
  18. Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic eruptions on North American climate using treering data, 1602–1900 A.D., Clim Change 10:219–239Google Scholar
  19. Rind D, Balachandran NK, Suozzo R (1992) Climate change and the middle atmosphere. Part II: the impact of volcanic aerosols. J Clim 5:189–208Google Scholar
  20. Robock AD (1984) Climate model simulations of the El Chichón eruption. Geofis Int 23:403–414Google Scholar
  21. Robock AD (1991) The volcanic contribution to climate change of the past 100 years. In: Schlesinger ME (ed) Greenhouse gas-induced climate change: a critical appraisal of simulations and observations. Elsevier, Amsterdam, pp 429–444Google Scholar
  22. Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 12:2405–2408Google Scholar
  23. Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. MPI Report No 95Google Scholar
  24. Schmitz G, Grieger N (1980) Model calculations of the structure of planetary waves in the upper troposphere and lower stratosphere as a function of the wind field in the upper stratosphere. Tellus 32:207–214Google Scholar
  25. Schult I (1991) Bildung und Transport von Aerosolteilchen in der Stratosphäre und ihre Bedeutung für den Strahlungshaushalt. Examensarbeit No 11, Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  26. Spencer RW, Christy JR, Grody NC (1990) Global atmospheric temperature monitoring with satellite microwave measurements: method and results 1979–84, J Clim 3:1111–1128Google Scholar
  27. Storch H von, Zwiers FW (1988) Recurrence analysis of climate sensitivity experiments. J Clim 1:157–171Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • H-F Graft
    • 1
  • I Kirchner
    • 1
  • A Robock
    • 2
  • I Schult
    • 1
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany
  2. 2.Department of MeteorologyUniversity of MarylandCollege ParkUSA

Personalised recommendations