Skip to main content
Log in

Ependyma and meninges of the spinal cord of the mouse

A light-and electron-microscopic study

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In addition to ependymal epithelial cells, numerous tanycytes are found along the entire central canal of the mouse. These tanycytes are arranged in clusters in the cervical, thoracic and lumbar segments of the spinal cord. In the conus medullaris, tanycytes separate and ensheath bundles of myelinated and unmyelinated axons; their processes take part in the formation of the stratum marginale gliae. In the caudal part of the spinal cord, the ventral wall of the central canal is thin and some areas are reduced to a single-cell thickness. In this region, ependymal cells participate directly in the formation of the stratum marginale gliae.

The meninges consist of the intima piae, the pia mater, the arachnoid, a subdural neurothelium and the dura mater. The subarachnoid space appears occluded and opens only around the spinal roots. In the vicinity of the spinal ganglia, the dura mater, the subdural neurothelium and the arachnoid form a cellular reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres KH (1966) Über die Feinstruktur der Hüllen des Nervensystems der Katze (Felis catus L.). Verh Anat Ges 61:483–487

    Google Scholar 

  • Andres KH (1967a) Über die Feinstruktur der Arachnoidea und Dura mater von Mammalia. Z Zellforsch 79:272–295

    Google Scholar 

  • Andres KH (1967b) Zur Feinstruktur der Arachnoidalzotten bei Mammalia. Z Zellforsch 82:92–109

    Google Scholar 

  • Becker DP, Wilson JA, Watson GW (1972) The spinal cord central canal: response to experimental hydrocephalus and canal occlusion. J Neurosurg 36:416–424

    Google Scholar 

  • Bradbury MWB, Lathem W (1965) A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space. J Physiol 181:785–800

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Google Scholar 

  • Cloyd MW, Low FN (1974) Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels. J Comp Neurol 153:325–368

    Google Scholar 

  • Dohrmann GJ (1972) Cervical cord in experimental hydrocephalus. J Neurosurg 37:538–542

    Google Scholar 

  • Eisenberg HM, McLennan JE, Welch K (1974) Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 41:20–28 (1974)

    Google Scholar 

  • Haller FR, Low FN (1971) The fine structure of the peripheral nerve root sheath in the subarachnoid space in the rat and other laboratory animals. Am J Anat 131:1–20

    Google Scholar 

  • Haller FR, Haller AC, Low FN (1972) The fine structure of cellular layers and connective tissue space at spinal nerve root attachments in the rat. Am J Anat 133:109–124

    Google Scholar 

  • Himango WA, Low FN (1971) The fine structure of a lateral recess of the subarachnoid space in the rat. Anat Rec 171:1–20

    Google Scholar 

  • Horstmann E (1954) Die Faserglia des Selachiergehirns. Z Zellforsch 39:588–617

    Google Scholar 

  • Kuwamura K, McLone DG, Raimondi AJ (1978) The central (spinal) canal in congenital murine hydrocephalus: morphological and physiological aspects. Child's Brain 4:216–234

    Google Scholar 

  • Leonhardt H (1966) Über ependymale Tanyzyten des III. Ventrikels beim Kaninchen in elektronenmikroskopischer Betrachtung. Z Zellforsch 74:1–11

    Google Scholar 

  • Leonhardt H (1980) Ependym und Circumventrikuläre Organe. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, Vol 4, part 10. Springer: Berlin Heidelberg New York, pp 177–666

    Google Scholar 

  • Malloy JJ, Low FN (1974) Scanning electron microscopy of the subarachnoid space in the dog. II. Spinal nerve exits. J Comp Neurol 157:87–108

    Google Scholar 

  • McLaurin RL, Bailey OT, Schurr PH, Ingraham FD (1954) Myelomalacia and multiple cavitations of spinal cord secondary to adhesive arachnoiditis. Arch Pathol Lab Med 57:138–146

    Google Scholar 

  • McLone DG, Bondareff W (1975) Developmental morphology of the subarachnoid space and contiguous structures in the mouse. Am J Anat 142:273–294

    Google Scholar 

  • Millhouse OE (1972) Light and electron microscopic studies of the ventricular wall. Z Zellforsch 127:149–174

    Google Scholar 

  • Nabeshima S, Reese TS, Landis DMD, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–170

    Google Scholar 

  • Pilgrim Ch, Wagner H-J (1977) Zur Frage der Transportfunktion des Tanyzytenependyms. Nova Acta Leopol Suppl 9:69–74

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Seitz R, Schwendemann G, Löhler J (1980) Experimentelle Infektion der Maus mit dem Sendai-Virus (Parainfluenza I-Virus): Beteiligung von Rückenmark und Spinalganglien. Curr Top Neuropathol 6:61–75

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Sterba G, Naumann W (1966) Elektronenmikroskopische Untersuchungen über den Reissnerschen Faden und die Ependymzellen im Rückenmark von Lampetra planerii (Bloch). Z Zellforsch 72:516–524

    Google Scholar 

  • Torvik A, Murthy VS (1977) The spinal cord central canal in kaolin-induced hydrocephalus. J Neurosurg 47:397–402

    CAS  PubMed  Google Scholar 

  • Waggener JD, Beggs J (1967) The membranous coverings of neural tissues: an electron microscopy study. J Neuropathol Exp Neurol 26:412–426

    Google Scholar 

  • Wechsler W (1966) Elektronenmikroskopischer Beitrag zur Differenzierung des Ependyms am Rückenmark von Hühnerembryonen. Z Zellforsch 74:423–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seitz, R., Löhler, J. & Schwendemann, G. Ependyma and meninges of the spinal cord of the mouse. Cell Tissue Res. 220, 61–72 (1981). https://doi.org/10.1007/BF00209966

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209966

Key words

Navigation