Skip to main content
Log in

An insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the Musca domestica and Trichoplusia ni

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ahmad S, Pardini RS (1989) Evidence for the presence of glutathione peroxidase activity toward an organic hydroperoxide in larvae of the cabbage looper moth, T.ni. Insect Biochem 18: 861–866

    Google Scholar 

  • Ahmad S, Pardini RS (1990) Mechanisms for regulation of oxygen toxicity in phytophagus insects. Free Rad Biol Med 8: 401–413

    Google Scholar 

  • Anderson MS (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113: 548–555

    Google Scholar 

  • Bannai S, Sato H, Ishii T, Taketani S (1991) Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta 1092, 175–179

    Google Scholar 

  • Brazy PC, Balaban RS, Gollans SR, Mandel LJ, Dennis VW (1980) Inhibition of renal metabolism: Relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule. J Clin Invest 66: 1211–1221

    Google Scholar 

  • Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press, London

    Google Scholar 

  • Deneke SM (1992) Induction of cystine transport in bovine pulmonary artery endothelial cells by sodium arsenite. Biochim Biophys Acta 1109: 127–131

    Google Scholar 

  • Finney DJ (1964) Probit Analysis (2nd ed), Cambridge University Press, London

    Google Scholar 

  • Halliwell B, Gutteridge MC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1–14

    Google Scholar 

  • Krepple H, Bauman JW, Mckim JM, Klaassen CD (1993) Induction of metallothionein by arsenicals in mice. Fund Appl Toxicol 20: 184–189

    Google Scholar 

  • Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989) Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Cell Devl Biol 25: 442–448

    Google Scholar 

  • Matsumura F (1975) Toxicology of Insecticides. Plenum Press, N.Y.

    Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolated of alcaligenes. J Appl Bacteriol 41: 295–305

    Google Scholar 

  • Pershagen G (1983) The epidemiology of human arsenic exposure. In: Fowler BA (ed) Biological and environmental effects of arsenic, Elsevier, Amsterdam, pp. 199–232

    Google Scholar 

  • Pritsos CA, Ahmad S, Bowen SM, Blomquist GJ, Pardini RS (1988) Antioxidant enzymes in the southern armyworms, Spodoptera eridania. Comp Biochem Physiol 90C: 423–427

    Google Scholar 

  • Squibb KS, Fowler BA (1983) The toxicity of arsenic and its compounds. In: Fowler BA (ed) Biological and environmental effects of arsenic, Elsevier, Amsterdam, pp. 233–269

    Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contamin Toxicol 124: 79–110

    Google Scholar 

  • Yih LD, Huang H, Jan KY, Lee TC (1991) Sodium arsenite induce ATP depletion and mitochondrial damage in Hela cells. Cell Biol Intl Reports 15: 253–264

    Google Scholar 

  • Zaman K, MacGill RS, Ahmad S, Pardini RS (1993) Mercury and arsenic induce oxidative stress in model insect species. FASEB J 7: 348

    Google Scholar 

  • Zaman K, MacGill RS, Johnson JE, Ahmad S, Pardini RS (1994) An insect model for assessing mercury toxicity: Effect of mercury on antioxidant enzyme activities of the housefly, Musca domestica and cabbage looper moth, Trichoplusia ni. Arch Environ Contam Toxicol 26: 114–118

    Google Scholar 

  • Zaman K, Batcabe JP, MacGill RS, Pardini RS (1994) Insect model for assessing mercury toxicity: Mercury induced lipid peroxidation, depletion of glutathione and induced protein oxidation in the housefly, Musca domestica and cabbage looper moth, Trichoplusia ni. Toxic Substances J (USA) 13: 129–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaman, K., Pardini, R.S. An insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the Musca domestica and Trichoplusia ni . Bull. Environ. Contam. Toxicol. 55, 845–852 (1995). https://doi.org/10.1007/BF00209463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209463

Keywords

Navigation