Skip to main content
Log in

Junctions in the central nervous system of the cat

III. Gap junctions and membrane-associated orthogonal particle complexes (MOPC) in astrocytic membranes

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Fixed and unfixed astrocytic membranes from the CNS of the cat were studied by means of the freeze-etching technique.

A variable number of gap junctions was detected in astrocytic membranes. They are characterized by the well known hexagonal composition of their subunits. Besides this type of highly ordered membrane-bound particles, a second one was found. It is composed of four single particles (diameter 5 nm) which form an orthogonal subunit with a side length of about 10 nm. These membrane-associated orthogonal particle complexes (MOPC) could be observed in different stages of aggregation and expansion. They reveal an accumulation in membranes of the marginal glia layers and in the perivascular astrocytic end-feet. Unfixed, glycerol treated membranes, however, do not show these structures. After glycerol treatment of the unfixed membranes by immersion, the MOPC disintegrate to single particles which form clusters of various extension. The clustering phenomenon is dependent on the length of the time of exposure to glycerol. Shortening of the glycerol treatment by intravasal perfusion of the cryoprotectant agent causes an decrease of the clusters. Fragments and transient forms of the MOPC become visible. By variation of different physico-chemical parameters of the washing solution a similar effect on the MOPC was not achieved. The discussion deals with probable functional aspects of the MOPC. They are considered to act as membrane-bound functional multienzyme complexes which a) might play a role in mediating transmembrane passage of metabolites, or b) are essential for CSF control mechanisms, or c) have a functional relation to the nexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K., Moor, H., Pfenninger, K., Sandri, Cl.: Contribution of new impregnation methods and freeze-etching to the problems of synaptic fine structure. Progr. Brain Res. 31, 223–240 (1969)

    Google Scholar 

  • Arntzen, C. J., Dilley, R. A., Crane, F. L.: A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques, and ultrastructural characterization of membrane fractions obtained from digitonin-treated spinach chloroplasts. J. Cell Biol. 43, 16–31 (1969)

    Google Scholar 

  • Branton, D.: Fracture faces of frozen membranes. Proc. nat. Acad. Sci. (Wash.) 55, 1048–1056 (1966)

    Google Scholar 

  • Branton, D.: Membrane structure. Ann. Rev. Plant Physiol. 20, 209–238 (1969)

    Google Scholar 

  • Chalcroft, J. P., Bullivant, S.: An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J. Cell Biol. 47, 49–60 (1970)

    Google Scholar 

  • Davson, H.: The blood-brain barrier. In: The structure and function of nervous tissue, vol. IV, p. 321–445, (G. H. Bourne, ed.). New York-London: Academic Press 1972

    Google Scholar 

  • Deamer, D. W., Branton, D.: Fracture planes in an ice-bilayer model membrane system. Science 158, 655–657 (1969)

    Google Scholar 

  • Dermietzel, R.: Visualization by freeze-fracturing of regular structures in glial cell membranes. Naturwissenschaften 60, 208 (1973a)

    Google Scholar 

  • Dermietzel, R.: Paracrystalline formations in astrocytic membranes of fixed brain of cats: A freeze-etching study. Proc. III. Europ. Anat. Congr. (Manchester), p. 109–111 (1973b)

  • Dermietzel, R.: Junctions in the central nervous system of the cat. I. Membrane fusion in central myelin. Cell Tiss. Res. 148, 565–576 (1974)

    Google Scholar 

  • Dermietzel, R.: Junctions in the central nervous system of the cat. II. A contribution to the tertiary structure of the axonal-glial junctions in the paranodal region of the node of Ranvier. Cell Tiss. Res. 148, 577–586 (1974)

    Google Scholar 

  • Dermietzel, R., Brettschneider, H.: Eine Untersuchung peripherer vegetativer Nervenfasern des Ductus deferens mit Hilfe der Gefrierätztechnik. Z. Zellforsch. 137, 111–124 (1973)

    Google Scholar 

  • Friend, D. S., Gilula, N. B.: Variations in tight and gap junctions in mammalian tissues. J. Cell Biol. 53, 758–776 (1972)

    Google Scholar 

  • Golgi, C.: Opera Omnia, vol. 1, p. 40. Milano: U. Hoepli 1903 a

    Google Scholar 

  • Golgi, C.: Opera Omnia, vol. 2, p. 460. Milano: U. Hoepli 1903 b

    Google Scholar 

  • Goodenough, D. A., Revel, J. P.: A fine structural analysis of intercellular junctions in the mouse liver. J. Cell Biol. 45, 272–290 (1970)

    Google Scholar 

  • Hamberger, A.: Oxidation of tricarboxylic acid cycle intermediates by nerve cell bodies and glial cells. J. Neurochem. 8, 31–45 (1961)

    Google Scholar 

  • Hamberger, A.: Difference between isolated neuronal and vascular glia with respect to respiratory activity. Acta physiol. scand. 58, Suppl. 203, 1–52 (1963)

    Google Scholar 

  • Hydén, H., Pigon, A.: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters nucleus. J. Neurochem. 6, 57–72 (1960)

    Google Scholar 

  • Kuffler, S. W., Nicholls, J. G.: The physiology of neuroglial cells. Ergebn. Physiol. 57, 1–90 (1966)

    Google Scholar 

  • Le Fevre, P. G., Peters, A. A.: Evidence of mediated transfer of monosaccharides from blood to brain in rodents. J. Neurochem. 13, 35–46 (1966)

    Google Scholar 

  • Matile, Ph., Jost, M., Moor, H.: Interzelluläre Lokalisation proteolytischer Enzyme von Neurospora crassa. Z. Zellforsch. 68, 205–216 (1965)

    Google Scholar 

  • McIntyre, J. A., Gilula, N. B., Karnovsky, M. J.: Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. (Abstract). J. Cell Biol. 59, 208a (1973)

  • McNutt, N. S., Weinstein, R. S.: The ultrastructure of the nexus. A correlated thin-section and freeze-cleaved study. J. Cell Biol. 47, 666–688 (1970)

    Google Scholar 

  • Meyer, H. W., Winkelmann, H.: Die Gefrierätzung und die Struktur biologischer Membranen. Protoplasma 68, 253–270 (1969)

    Google Scholar 

  • Moor, H.: Beitrag der Gefrierätzmethode zur Aufklärung von Struktur und Funktion der Biomembranen. Ber. dtsch. bot. Ges. 82, 385–396 (1969)

    Google Scholar 

  • Moor, H.: Recent progress in the freeze-etching technique. Phil. Trans. B 261, 121–131 (1971)

    Google Scholar 

  • Moor, H., Mühlethaler, K.: Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628 (1963)

    Google Scholar 

  • Nanninga, N.: Uniqueness and location of the fracture plane in the plasma membrane of Bacillus subtilis. J. Cell Biol. 49, 564–570 (1971)

    Google Scholar 

  • Nicolson, G. L., Painter, R. G.: Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J. Cell Biol. 59, 395–406 (1973)

    Google Scholar 

  • Orci, L., Matter, A., Rouiller, Ch.: A comparative study of freeze-etched replicas and thin sections of rat liver. J. Ultrastruct. Res. 35, 1–19 (1971)

    Google Scholar 

  • Pappas, G. D., Bennett, M. V.: Specialized junctions involved in electrical transmission between neurons. Ann. N.Y. Acad. Sci. 137, 495–508 (1966)

    Google Scholar 

  • Pinto da Silva, P.: Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. J. Cell Biol. 53, 777–787 (1972)

    Google Scholar 

  • Pinto da Silva, P., Branton, D.: Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J. Cell Biol. 45, 598–605 (1970)

    Google Scholar 

  • Pinto da Silva, P., Branton, D., Douglas, S. D.: Localization of A1 antigen sites on human erythrocyte ghosts. Nature (Lond.) 232, 194 (1971)

    Google Scholar 

  • Pinto da Silva, P., Gilula, N. B.: Gap junctions in normal and transformed fibroblasts in culture. Exp. Cell Res. 71, 393–401 (1972)

    Google Scholar 

  • Rash, J. E., Ellisman, M. H., Staehelin, L. A.: Freeze-cleaved neuromuscular junctions: Macromolecular architecture of post-synaptic membranes of normal denervated muscle (Abstract). J. Cell Biol. 59, 208a (1973)

  • Revel, J. P., Karnovsky, M. J.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33, C 7 (1967)

    Google Scholar 

  • Revel, J. P., Yee, A. G., Hudspeth, A. J.: Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc. nat. Acad. Sci. (Wash.) 68, 2924–2927 (1971)

    Google Scholar 

  • Robertis, E. de: Some new electron microscopical contributions to the biology of neuroglia. Progr. Brain Res. 15, 1–11 (1965)

    Google Scholar 

  • Robertis, E. de, Gerschenfeld, H. M.: Submicroscopic morphology and function of glial cells. Int. Rev. Neurobiol. 3, 1–65 (1961)

    Google Scholar 

  • Robertson, J. D.: The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221 (1963)

    Google Scholar 

  • Robertson, J. D., Bodenheimer, T. S., Stage, D. E.: The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. Cell Biol. 19, 159–199 (1963)

    Google Scholar 

  • Staehelin, L. A.: Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc. nat. Acad. Sci. (Wash.) 69, 1318–1321 (1972)

    Google Scholar 

  • Steere, R. L., Sommer, J. R.: Stereo ultrastructure of nexus faces exposed by freeze-fracturing. J. Microscopie 15, 205–218 (1972)

    Google Scholar 

  • Tillack, T. W., Marchesi, V. T.: Demonstration of the outer surface of freeze-etched red blood cell membranes. J. Cell Biol. 45, 649–653 (1970)

    Google Scholar 

  • Tschirgi, R. D.: The blood-brain barrier. In: Biology of neuroglia. (W. F. Windle, ed.), p. 130–138. Springfield-Illinois: Charles Thomas 1958

    Google Scholar 

  • Wolff, J.: Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z. Zellforsch. 60, 409–431 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in part at the IIIth European Congress of Anatomists, Manchester, September 1973.

Supported by Deutsche Forschungsgemeinschaft, „Sonderforschungsbereich 114(Bionach)”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dermietzel, R. Junctions in the central nervous system of the cat. Cell Tissue Res. 149, 121–135 (1974). https://doi.org/10.1007/BF00209055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209055

Key words

Navigation