Skip to main content

Advertisement

Log in

Multidetector single-photon emission tomography: are two (or three or four) heads really better than one?

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Today, almost every camera sold, with the exception of mobile systems, is “single-photon emission tomography-capable”. The atest technical development is the so-called multidetector systems. This article reviews the development and current and potential clinical role of these multidetector systems, with particular emphasis on multicamera systems. The utility of multidetector systems is considered in the context of an image's signal-to-noise ratio, including its effect on diagnostic or quantitative accuracy. The potential for multidetector systems to increase the signal-to-noise ratio is discussed, as are other potential benefits. Finally, advice on an approach to equipment selection is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keyes JW. Perspectives on tomography. J Nucl Med 1982; 23:633–640.

    Google Scholar 

  2. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963; 80:853–661.

    Google Scholar 

  3. Kuhl DE, Edwards RQ, Ricci AR, Yacob RJ, Mich TJ, Alavi A. The Mark IV system for radionuclide computed tomography of the brain. Radiology 1976; 121:405–413.

    Google Scholar 

  4. Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomography (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr 1980; 4:230–240.

    Google Scholar 

  5. Jaszczak RJ, Murphy PH, Huard D, et al. Radionuclide emission computed tomography of the head with Tc-99m and a scintillation camera. J Nucl Med 1977; 18:373–380.

    Google Scholar 

  6. Keyes JW, Orlandea N, Heetderks WJ, et al. The humongotron. A scintillation camera transaxial tomography. J Nucl Med 1977;18:381–387.

    Google Scholar 

  7. Rogers WL, Clinthorne NH, Stamos J, et al. Performance evaluation of SPRINT, a single-photon ring tomograph for brain imaging. J Nucl Med 1984; 25:1013–1018.

    Google Scholar 

  8. Stoddart HF, Stoddart HA. A new development in single gamma transaxial tomography: Union Carbide focussed collimator scanner. IEEE Trans Nucl Sci 1979; NS-26:2710–2712.

    Google Scholar 

  9. Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci 1988; NS-35:740–743.

    Google Scholar 

  10. Lim CB, Walker R, Pinkstaff C, et al. Triangular SPECT system for 3-D total organ volume imaging: performance results and dynamic imaging capability. IEEE Trans Nucl Sci 1986; NS-33:501–504.

    Google Scholar 

  11. Devous MD, Corbett JR, Bonte FJ, Valentino F, Jarkewicz G, Grabnic M, Brack J, Diaz P, Sukalac R, Bessett J. Initial on-site evaluation of a new three-headed SPECT system (Prism). J Nucl Med 1988; 29:760.

    Google Scholar 

  12. Kimura K, Hashikawa K, Etani H, et al. A new apparatus for brain imaging: four-head rotating gamma camera single-photon emission computed tomography. J Nucl Med 1990; 31:603–609.

    Google Scholar 

  13. Shosa D, Kaufman L. Methods for evaluation of diagnostic imaging instrumentation. Phys Med Biol 1981; 26:101–112.

    Google Scholar 

  14. King MA, Schwinger RB, Doherty PW, Penney BC. Two-dimensional filtering of SPECT images using the Metz and Wiener filters. J Nucl Med 1984; 25:1234–1240.

    Google Scholar 

  15. King MA, Doherty PW, Schwinger RB. A Wiener filter for nuclear medicine images. Med Phys 1983; 10:876–880.

    Google Scholar 

  16. Links JM, Leal JP, Mueller-Gaertner HW, Wagner HN. Improved positron emission tomography quantification by Fourier-based restoration filtering. Eur J Nucl Med. In press.

  17. Links JM, Jeremy RW, Dyer SM, Frank TL, Becker LC. Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT. J Nucl Med 1990; 31:1230–1236.

    Google Scholar 

  18. Sorenson JA, Phelps ME. Physics in nuclear medicine, 2nd edn. Orlando: Grime & Stratton, 1987.

    Google Scholar 

  19. Goris ML, Briandet PA. A clinical and mathematical introduction to computer processing of scintigraphic images. New York: Raven Press, 1983.

    Google Scholar 

  20. Muehllehner G. Effect of resolution on required count density in ECT imaging: a computer simulation. Phys Med Biol 1985; 30:163–173.

    Google Scholar 

  21. Fahey FH, Harkness BA, Keyes JW, Madsen MT, Battisti C, Zito V. Sensitivity, resolution and image quality with a multihead SPELT camera. J Nucl Med 1992; 33:1859–1863.

    Google Scholar 

  22. Mueller SP, Plak JF, Kijewski MF, Holman BL. Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med 1986; 27:1729–1738.

    Google Scholar 

  23. Moore SC, Kouris K, Cullum I. Collimator design for single photon emission tomography. Eur J Nucl Med 1992; 19:138–150.

    Google Scholar 

  24. Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H. Effect of spatial resolution on SPECT quantification values. J Nucl Med 1989; 30:508–514.

    Google Scholar 

  25. Jasczzak RJ, Chang LT, Murphy PH. Single photon emission computed tomography using multi-slice fan beam collimators. IEEE Trans Nucl Sci 1979; NS-26:610–618.

    Google Scholar 

  26. Jaszczak RJ, Greer KL, Coleman RE. SPECT using a specially designed cone beam collimator. J Nucl Med 1988; 29:1398–1405.

    Google Scholar 

  27. Hoffman EJ. 180° compared with 360° sampling in SPECT. J Nucl Med 1982; 23:745–747.

    Google Scholar 

  28. Tamaki N, Mukai T, Ishii Y, Fujita T, Yamamoto K, Minato K, Yonekura Y, Tamaki S, Kambara H, Kawai C, Torizuka K. Comparative study of thallium emission myocardial tomography with 180° and 360° data collection. J Nucl Med 1982; 23:661–666.

    Google Scholar 

  29. Eisner RL, Nowak DJ, Pettigrew R, Fajman W. Fundamentals of 180° acquisition and reconstruction in SPECT imaging. J Nucl Med 1986; 27:1717–1728.

    Google Scholar 

  30. Go RT, MacIntyre WJ, Houser TS, Pantoja M, O'Donnell JK, Feiglin DH, Sufka BJ, Underwood DA, Meaney TF. Clinical evaluation of 360° and 180° data sampling techniques for transaxial SPELT thallium-201 myocardial perfusion imaging. J Nucl Med 1985; 26:695–706.

    Google Scholar 

  31. Civelek AC, Durski K, Links J, Cole P, Turek J, Wagner HN. Quantification of rest and exercise SPECT studies with both Tl-201 thallous chloride and Tc-99m isonitrile in normal volunteers [abstract]. J Nucl Med 1988; 29:944.

    Google Scholar 

  32. Stewart RE, Schwaiger M, Hutchins GD, Chiao PC, Gallagher KP, Nguyen N, Petry NA, Rogers WL. Myocardial clearance kinetics of technetium-99m-SQ30217: a marker of regional myocardial blood flow. J Nucl Med 1990; 31:1183–1190.

    Google Scholar 

  33. Bok BD, Bice AN, Clausen M, Wong DF, Wagner HN. Artifacts in camera based single photon emission tomography due to time activity variation. Eur J Nucl Med 1987; 13:439–442.

    Google Scholar 

  34. Links JM, Frank TL, Becker LC. Effect of differential tracer washout during SPECT acquisition. J Nucl Med 1991; 32:2253–2257.

    Google Scholar 

  35. O'Connor MK, Cho DS. Rapid radiotracer washout from the heart: effect on image quality in SPECT performed with a single-headed gamma camera system. J Nucl Med 1992; 33:1146–1151.

    Google Scholar 

  36. Nakajima K, Shuke N, Taki J, Ichihara T, Motomura N, Bunko H, Hisada K. A simulation of dynamic SPECT using radio-pharmaceuticals with rapid clearance. J Nucl Med 1992; 33:1200–1206.

    Google Scholar 

  37. Juni JE. SPECT of rapidly cleared tracers: imaging a cheshire cat. J Nucl Med 1992; 33:1206–1208.

    Google Scholar 

  38. Manglos SH, Jaszczak RJ, Floyd CE, Hahn LJ, Greer KL, Coleman RE. Nonisotropic attenuation in SPECT: Phantom tests of quantitative effects and compensation techniques. J Nucl Med 1987; 28:1584–1591.

    Google Scholar 

  39. DePuey EG, Garcia EV Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989; 30:441–449.

    Google Scholar 

  40. Eisner RL, Tamas MJ, Cloninger K, Shonkoff D, Oates JA, Gober AM, Dunn DW, Malko JA, Churchwell AL, Patterson RE. Normal SPECT thallium-201 bull's-eye display: gender differences. J Nucl Med 1988; 29:1901–1909.

    Google Scholar 

  41. Ljungberg M, Strand SE. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990; 31:493–500.

    Google Scholar 

  42. Manglos SH, Bassano DA, Thomas FD. Cone-beam transmission computed tomography for nonuniform attenuation compensation of SPELT images. J Nucl Med 1991; 32:1813–1820.

    Google Scholar 

  43. Gullberg GT, Tung CH, Zeng GL, Christian PE, Datz FL, Morgan HT. Simultaneous transmission and emission computed tomography using a three-detector SPECT system [abstract]. J Nucl Med 1992; 33:901.

    Google Scholar 

  44. Bailey DL, Eberl S, Tan P, Meikle SR, Fulton RR, Hutton BF. Implementation of a scanning line source for attenuation correction with simultaneous emission/transmission SPECT [abstract]. J Nucl Med 1992; 33:901

    Google Scholar 

  45. Coleman RE, Jaszczak RJ, Cobb FR. Comparison of 180° and 360° data collection in thallium-201 imaging using single-photon emission computerized tomography (SPECT): concise communication. J Nucl Med 1982; 23:655–660.

    Google Scholar 

  46. Knesaurek K, King MA, Glick SJ, Penney BC. Investigation of causes of geometric distortion in 180° and 360° angular sampling in SPECT. J Nucl Med 1989; 30:1666–1675.

    Google Scholar 

  47. Miller TR, Wallis JW. Clinically important characteristics of maximum-likelihood reconstruction. J Nucl Med 1992; 33:1678–1684.

    Google Scholar 

  48. Gilland DR, Tsui BMW, Metz CE, Jaszczak RJ, Perry JR. An evaluation of maximum likelihood-expectation maximization reconstruction for SPECT by ROC analysis. J Nucl Med 1992; 33:451–457.

    Google Scholar 

  49. Busemann-Sokole E. Measurement of collimator hole angulation and camera head tilt for slant and parallel hole collimators used in SPECT. J Nucl Med 1987; 28:1592–1598.

    Google Scholar 

  50. Cerqueira MD, Matsuoka D, Ritchie JL, Harp GD. The influence of collimators on SPECT center of rotation measurements: artifact generation and acceptance testing. J Nucl Med 1988; 29:1393–1397.

    Google Scholar 

  51. Malmin RE, Stanley PC, Guth WR. Collimator angulation error and its effect on SPECT. J Nucl Med 1990; 31:655–659.

    Google Scholar 

  52. Gottschalk SC, Salem D, Lim CB, Wake RH. SPECT resolution and uniformity improvements by noncircular orbit. J Nucl Med 1983; 24:822–828.

    Google Scholar 

  53. Galt JR, Cullum SJ, Garcia EV. SPECT quantification: a simplified method of attenuation and scatter correction for cardiac imaging. J Nucl Med 1992; 33:2232–2237.

    Google Scholar 

  54. Karp JS, Daube-Witherspoon ME, Hoffman EJ, Lewellen TK, Links JM, Wong WH, Hichwa RD, Casey ME, Colsher JG, Hitchens RE, Muehllehner G, Stoub EW. Performance standards in positron emission tomography. J Nucl Med 1991; 32:2342–2350.

    Google Scholar 

  55. Graham MM, Links JM, Lewellen TK, King MA, Croft BY, Wong DF, Esser PD, Goris ML. Considerations in the purchases of a nuclear medicine computer system. J Nucl Med 1988; 29:717–724.

    Google Scholar 

  56. Links JM. Toward a useful measure of flood-field uniformity: can the beauty in the eye of the beholder be quantified? Eur J Nucl Med 1992; 19:757–758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Links, J.M. Multidetector single-photon emission tomography: are two (or three or four) heads really better than one?. Eur J Nucl Med 20, 440–447 (1993). https://doi.org/10.1007/BF00209005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209005

Key words

Navigation