Skip to main content
Log in

Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Google Scholar 

  • Arakawa A (1975) Modelling clouds and cloud processes for use in climate models. GARP Publication Series 16. ICSU/WMO:183–197

  • Beheng KD (1994) A parametrization of warm cloud microphysical conversion processes. Atmos Res 33:193–206

    Google Scholar 

  • Berry EX, Reinhardt RL (1973) Modeling of condensation and collection within clouds. DRI Phys Sci Pub 16, University of Nevada

  • Bigg EK (1953) The supercooling of water. Proc Phys Soc 66:688–694

    Google Scholar 

  • Boer GJ, McFarlane NA, Laprise R, Henderson JD, Blanchet JP (1984) The Canadian Climate Centre spectral atmospheric general circulation model. Atmosphere-Ocean 22:397–429

    Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect. A sensitivity study with two general circulation models. Tellus 47B:281–300

    Google Scholar 

  • Boucher O, Le Trent H, Baker MB (1995) Precipitation and radiation modelling in a GCM: introduction of cloud microphysical processes. J Geophys Res 100:16395–16414

    Google Scholar 

  • Brinkop S, Roeckner E (1995) Sensitivity of a general circulation model to parametrizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus 47A:197–220

    Google Scholar 

  • Calahan RF, Ridgway W, Wiscombe WJ, Bell TL, Snider JB (1994) The albedo of fractal stratocumulus clouds. J Atmos Sci 51:2434–2455

    Google Scholar 

  • Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, Li ZX, Liang XZ, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington MW, Wetherald RT, Yanai I, Zhang MH (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95:16601–16615

    Google Scholar 

  • Chen C, Cotton WR (1987) The physics of the marine stratocumulus-capped mixed layer. J Atmos Sci 44:2951–2977

    Google Scholar 

  • Chen CT, Roeckner E (1996) Validation of the Earth radiation budget as simulated by the Max Planck Institute for Meteorology general circulation model ECHAM4 using satellite observations of the Earth Radiation Budget Experiment (ERBE). J Geophys Res 101:4269–4287

    Google Scholar 

  • Claussen M, Lohmann U, Roeckner E, Schulzweida U (1994) A global data set of land-surface parameters. Report 135, Max-Planck-Institut für Meteorologie, Germany

    Google Scholar 

  • Collins WD, Conant WC, Ramanathan V (1994) Earth radiation budget, clouds and climate sensitivity. In: Calver JG (ed) The chemistry of the atmosphere: its impact on global change. Oxford University Press, Oxford, UK, pp 207–215

    Google Scholar 

  • Cotton WR, Tripoli GJ, Rauber RM, Mulvihill EA (1986) Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J Climate Appl Meteorol 25:1658–1680

    Google Scholar 

  • Davis A, Gabriel P, Lovejoy S, Schertzer D, Austin GL (1990) Discrete angle radiative transfer: 3. Numerical results and meterological applications. J Geophys Res 95:11729–11742

    Google Scholar 

  • Del Genio AD, Yao MS, Kovari W, Lo KKW (1996) A prognostic cloud water parametrization for global climate models. J Climate 9:270–304

    Google Scholar 

  • Eppel DP, Kapitza H, Claussen M, Jacob D, Koch W, Levkov L, Mengelkamp HT, Werrmann N (1995) The non-hydrostatic mesoscale model GESIMA. Part II: parametrizations and applications. Beitr Phys Atmos 68:15–41

    Google Scholar 

  • Feichter J, Kjellstrom E, Rodhe H, Dentener F, Lelieveld J, Roelofs GJ (1996) Simulation of the tropospheric sulfur cycle in a global climate model. Atmos Environ (in press)

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth's atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fouquart Y, Isaka H (1992) Sulfur emission, CCN, clouds and climate: a review. Ann Geophys 10:462–471

    Google Scholar 

  • Fowler LD, Randall DA, Rutledge SA (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part I: model description and simulated microphysical processes. J Climate 9:489–529

    Google Scholar 

  • Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970

    Article  Google Scholar 

  • Geleyn JF (1981) Some diagnostics of the cloud radiation interaction on ECMWF forecasting model. In: Workshop on radiation and cloud-radiation interaction in numerical modelling. 15–17 Oct. 1980 ECMWF, Reading, UK, pp 135–162

    Google Scholar 

  • Ghan SJ, Easter RC (1992) Computationally efficient approximations to stratiform cloud microphysics parametrization. Mon Weather Rev 120:1572–1582

    Google Scholar 

  • Greenwald TJ, Stephens GL, Vonder Haar TH, Jackson DL (1993) A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J Geophys Res 98:18471–18488

    Google Scholar 

  • Gunn KLS, Marshall JS (1958) The distribution with size of aggregate snowflakes. J Meteor 15:452–461

    Google Scholar 

  • Hahn CJ, Warren SG, London J (1994) Climatological data for clouds over the globe from surface observations, 1982–1991: the total cloud edition ORNL/CDIAC-72 NDP-026A Oak Ridge National Laboratory Oak Ridge, Tennessee, USA

    Google Scholar 

  • Hegg DA, Hobbs PV, Ferek RJ, Waggoner AP (1995) Measurements of some aerosol properties relevant to radiative forcing on the east coast of the United States. J Appl Meteorol 34:2306–2315

    Google Scholar 

  • IPCC, Climate Change (1992) The supplementary report to the IPCC scientific assessment. In: Houghton JT, Callander BA, Varney SK (eds), Cambridge University Press, Cambridge, UK

  • Johnson DW (1993) Parametrisation of the cloud topped boundary layer. Aircraft measurements. In: ECMWF Workshop Proc ‘Parametrization of the cloud topped boundary layer’, ECMWF, Reading, UK, pp 77–117

    Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations, Meteorol Monogr 32, Am Meteorol Soc

  • Kiehl JT, Hack JJ, Briegleb BP (1994) The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J Geophys Res 99:20815–20827

    Google Scholar 

  • King MD, Radke LF, Hobbs PV (1993) Optical properties of marine stratocumulus clouds modified by ships. J Geophys Res 98:2729–2739

    Google Scholar 

  • Lee JL, Liou KN, Ou SC (1992) A three-dimensional large-scale cloud model: testing the role of radiative heating and ice phase processes. Tellus 44A:197–216

    Google Scholar 

  • Le Trent H, Li ZX (1988) Using Meteosat data to validate a prognostic cloud generation scheme. Atmos Res 21:273–292

    Google Scholar 

  • Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmos 65:35–58

    Google Scholar 

  • Lin YL, Farley RD, Orville HD (1983) Bulk parametrization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Lohmann U, Roeckner E, Collins WD, Heymsfield AJ, McFarquhar GM, Barnett TP (1995) The role of water vapor and convection during the Central Equatorial Pacific Experiment (CEPEX) from observations and model simulations. J Geophys Res 100:26229–26245

    Google Scholar 

  • Lord SJ, Willoughby HE, Piotrowicz JM (1984) Role of parametrized ice-phase microphysics in an axialsymmetric, nonhydrostatic tropical cyclone model. J Atmos Sci 41:2836–2848

    Google Scholar 

  • Malm WC, Sisler JF, Huffman D, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99:1347–1370

    Google Scholar 

  • Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrological cycle. Mon Weather Rev 93:769–798

    Google Scholar 

  • Mason BJ (1971) The physics of clouds. Clarendon Press, Oxford

    Google Scholar 

  • Matveev LT (1984) Cloud dynamics. Atm Sci Library, Reidel, Dordrecht

    Google Scholar 

  • McFarlane NA, Boer GJ, Blanchet JP, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Climate: 1013–1044

  • McFarquhar GM, Heymsfield AJ (1996) Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment (CLEPEX). J Atmos (in press)

  • Mölders N, Laube M, Kramm G (1994) A scheme for parametrizing ice and water clouds in regional models. Proc of EUROTRAC Symp 1994, Borrell et al. (eds), SPB Academic Publishing, The Hague, The Netherlands, pp 839–844

    Google Scholar 

  • Morcrette JJ (1991) Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J Geophys Res 96:9121–9132

    Google Scholar 

  • Murakami M (1990) Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud — The 19 July 1981 CCOPE cloud. J Meteorol Soc Japan 68:107–128

    Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Tech Memo 206, 41 pp, Euro Cent for Medium Range Weather Forecasts, Reading, England

    Google Scholar 

  • Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365:823–826

    Google Scholar 

  • Ose T (1993) An examination of the effects of explicit cloud water in the UCLA GCM. J Meteorol Soc Japan 71:93–109

    Google Scholar 

  • Potter BE (1991) Improvements to a commonly used cloud microphysical bulk parametrization. J Appl Meteorol 30:1040–1042

    Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. Reidel, Dordrecht

    Google Scholar 

  • Radke LF, Coagley JA Jr, MD King (1989) Direct and remote sensing observations of the effects of ships on clouds. Science 246:1146–1149

    Google Scholar 

  • Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243:57–63

    Google Scholar 

  • Rangno AL, Hobbs PV (1994) Ice particle concentrations and precipitation development in small continental cumuliform clouds. Q J R Meteorol Soc 120:573–601

    Google Scholar 

  • Rasch PJ, Williamson DL (1990) Computational aspects of moisture transport in global models of the atmosphere. Q J R Meteorol Soc 116:1071–1090

    Google Scholar 

  • Rockel B, Raschke E, Weyres B (1991) A parametrization of broad-band radiative transfer properties of water, ice and mixed clouds. Beitr Phys Atmos 64:1–12

    Google Scholar 

  • Roeckner E (1995) Parameterization of cloud radiative properties in the ECHAM4 model. In: WCRP Workshop “Cloud microphysics parametrizations in global atmospheric circulation models”, 23–25 May 1995, WCRP-90, Kananaskis, Canada, pp 105–116

  • Roeckner E, Schlese U (1985) January simulation of clouds with a prognostic cloud cover scheme. In: ECMWF Workshop “Cloud cover parametrization in numerical models”, 26–28 Nov. 1984, ECMWF, Reading, UK, pp 87–108

    Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Report 93, Max-Planck-Institut für Meteorologic, Germany

    Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72:2–20

    Google Scholar 

  • Rossow WB, Walker AW, Garder LC (1993) Comparison of ISCCP and other cloud amounts. J Climate 6:2394–2418

    Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: a model for the “Seeder Feeder” process in warm-frontal bands. J Atmos Sci 40:1185–1206

    Google Scholar 

  • Slingo JM (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorol Soc 113:899–927

    Article  Google Scholar 

  • Smagorinsky J (1960) On the dynamical prediction of large-scale condensation by numerical methods. In: Physics of Precipitation, Geophys Mono 5, Am Geophys Union:71–78

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460

    Google Scholar 

  • Sundqvist H (1978) A parametrization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parametrization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Int Geophys Series 41, Academic Press, San Diego, USA

    Google Scholar 

  • Weng F, Grody NC (1994) Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J Geophys Res 99:25535–25551

    Google Scholar 

  • Xu KM, Krueger SK (1991) Evaluation of cloudiness parametrizations using a cumulus ensemble model. Mon Weather Rev 119:342–367

    Google Scholar 

  • Young KC (1993) Microphysical processes in clouds. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, U., Roeckner, E. Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dynamics 12, 557–572 (1996). https://doi.org/10.1007/BF00207939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207939

Keywords

Navigation