Skip to main content
Log in

The dynamics of H2O in minerals

  • Original Paper/Topic 8
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The application of infrared, proton nuclear magnetic resonance, and dielectric spectroscopy and incoherent neutron scattering for the elucidation of the dynamics of H2O incorporated into minerals is reviewed. The examples given include beryl, cordierite, gypsum, bassanite, layer silicates and zeolites. It is demonstrated that for such structures static models may be inappropriate, and dynamic models have to be used to describe the role and behavior of the H2O molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327

    Google Scholar 

  • Armbruster T, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291

    Google Scholar 

  • Atoji M, Rundle RE (1958) Neutron diffraction study of gypsum, CaSO4 · 2 H2O. J Chem Phys 29:1306–1311

    Google Scholar 

  • Bee M (1988) Quasielastic neutron scattering. 437 p., Adam Hilger, Bristol, UK

    Google Scholar 

  • Bezou C, Nonat A, Mutin JC, Christensen AN, Lehmann MS (1995) Investigation of the crystal structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by powder diffraction methods. J Solid State Chem 117:165–176

    Google Scholar 

  • Boutin H, Yip S (1968) Molecular Spectroscopy with Neutrons. 226 p., The MIT Press, Cambridge, Massachusetts, USA

    Google Scholar 

  • Boutin H, Safford GJ, Danner HR (1964) Low frequency motions of H2O molecules in crystals. J Chem Phys 40:2670–2679

    Google Scholar 

  • Carey JW (1993) The heat capacity of hydrous cordierite above 295 K. Phys Chem Minerals 19: 578–583

    Google Scholar 

  • Carson DG, Rossman GR, Vaughan RW (1982) Orientation and motion of water molecules in cordierite: a proton nuclear magnetic resonance study. Phys Chem Minerals 8:14–19

    Google Scholar 

  • Chall M, Winkler B, Hennion B, Kaiser I (1995) Determination of the ordering of molecular water in CaSO4 · 0.5 H2O at low temperatures. ISIS Annual Report 1995

  • Conard J, Estrade-Szwarckopf H, Dianoux AJ, Poinsignon C (1984) Water dynamics in a planar lithium hydrate in the interlayer space of a swelling clay. A neutron scattering study. J Phys 45:1361–1371

    Google Scholar 

  • Eckert J (1992) Theoretical introduction of neutron scattering spectroscopy. Spectrochim Acta 48A:271–283

    Google Scholar 

  • Einspahr H, Bugg CE (1980) The geometry of calcium-water interactions in crystalline hydrates. Acta Crystallosr B36:2564–271

    Google Scholar 

  • Farrel EF, Newnham RE (1967) Electronic and vibrational absorption spectra in cordierite. Am Mineral 51:1068–1087

    Google Scholar 

  • Ferraris G, Jones DW, Yerkess J. A neutron diffraction study of the crystal structure of analcime, NaAlSi2O6 · H2O. Z Kristallogr 135:240–252

  • Fuess H, Stuckenschmidt E, Schweiss BP (1986) Inelastic Neutron scattering studies of water in natural zeolites. Berichte der Bunsengesellschaft. Phys Chem 90:417–421

    Google Scholar 

  • Giampaolo C, Putnis A (1989) The kinetics of dehydration and order-disorder of molecular H2O in Mg-cordierite. Eur J Mineral 1: 193–202

    Google Scholar 

  • Gibbs GV (1966) The polymorphism of cordierite: I. The crystal structure of low cordierite. Am Mineral 51:1068–1087

    Google Scholar 

  • Gibbs GV, Breck DW, Meagher EP (1968) Structural refinement of hydrous and anhydrous synthetic beryl, Al2(Be3Si6)O18 and Emerald, Al1.9Cr0.1(Be3Si6). Lithos 1:275–285

    Google Scholar 

  • Gilchrist IG, Isnard R (1979) Rapid low-temperature dielectric studies. J Phys E: Scientific Instruments 12:28–30

    Google Scholar 

  • Goldman DS, Rossman GR, Dollase WA (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157

    Google Scholar 

  • Hawthorne F (1992) The role of OH and H2O in oxide and oxysalt minerals. Z Kristallogr 201:183–206

    Google Scholar 

  • Hochella MF Jr, Brown GE Jr, Ross FK, Gibbs GV (1979) High temperature crystal chemistry of hydrous Mgand Fe-cordierites. Am Mineral 64: 337–351

    Google Scholar 

  • Hougardy J, Stone WEE, Fripiat JJ (1976) NMR study of adsorbed water. I. Molecular orientation and protonic motions in the two-layer hydrate of a Na-vermiculite. J Chem Phys 64:3840–3851

    Google Scholar 

  • Hutton G, Pedersen B (1969) Proton and deuteron magnetic resonance in partly deuterated crystals — III. Gypsum J Phys Chem Sol 30:235–242

    Google Scholar 

  • Ivleva LV, Vakhrameev AM, Gabuda SP (1973) PMR investigation of natural analcite. Translation of Zhurnal Strukturnoi Khimii 14:44–48

    Google Scholar 

  • Jobic H (1992) Molecular Motions in zeolites. Spectrochim Acta 48A:293–312

    Google Scholar 

  • Langer K, Schreyer W (1976) Apparent effects of molecular water on the lattice geometry of cordierite: A discussion. Am Mineral 61:1036–1040

    Google Scholar 

  • Line CMB (1995) The behaviour of water in analcime. Ph.D. thesis, University of Cambridge

  • Line CMB, Winkler B, Dove MT (1994) Quasielastic neutron scattering study of the rotational dynamics of the water molecules in analcime. Phys Chem Minerals 21:451–459

    Google Scholar 

  • Line CMB, Dove MT, Knight K, Winkler B (in press) The lowtemperature behavior of analcime, I: High resolution neutron powder diffraction. Mineral Mag

  • Mirwald PW (1982) A high pressure phase transition in cordierite. Am Mineral 67: 277–283

    Google Scholar 

  • Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distcances in hydrogen bonds. J Am Chem Soc 77:6480–6486

    Google Scholar 

  • Novak A (1974) Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond 18:177–216

    Google Scholar 

  • Pake GE (1948) Nuclear resonance absorption in hydrated crystals: fine structrue of the proton line. J Chem Phys 16:327–336

    Google Scholar 

  • Pare X, Ducrois P (1964) Etude par resonance magnetique nucleaire de l'eau dans le beryl. Bull Soc Mineral Cristallogr 87:429–433

    Google Scholar 

  • Pedersen BF, Semmingsen D (1982) Neutron diffraction refinement of the structure of gypsum, CaSO2 · H2O. Acta Crystallogr B38:1074–1077

    Google Scholar 

  • Penfold J, Tomkinson J (1986) The ISIS Time focused crystal analyser spectrometer. Internal report, Rutherford Appleton Laboratory, RAL-86-019

  • Poinsignon C, Estrade-Szwarckopf H, Conard J, Dianoux AJ (1989) Structure and dynamics of intercalated water in clay minerals. Physica B: 156–157, 140–144

    Google Scholar 

  • Putnis A, Winkler B, Fernandez-Diaz L (1990) In situ IR spectroscopic and thermogravimetric investigation of the dehydration of gypsum. Mineral Mag 54:123–128

    Google Scholar 

  • Rehm HJ (1974) Paraelektrische Resonanz and dielektrische Dispersion von Wasser in Beryll-Einkristallen. Z Naturforschung 29a: 1558–1571

    Google Scholar 

  • Robie RA, Russel-Robbinson S, Hemingway BS (1989) Heat capacities and entropies from 8 to 1000 K of Langbeinite (K2Mg2(SO4)3), Anhydrite (CaSO4) and of Gypsum (CaSO4, 2 H2O) to 325 K. Thermochem Acta 139:67–81

    Google Scholar 

  • Rossman G (1988) Vibrational spectroscopy of hydrous components. In: Hawthorne FC (ed) Spectroscopic methods in Mineralogy and Geology. Rev Mineral 18:193–204

  • Ryskin YI (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. In: Farmer VC (ed) The infrared spectra of minerals. Mineral Soc Lond 137–182;539

  • Sanders IS, Doff DH (1991) A blue sodic beryl from southeast Ireland. Mineral Mag 55:167–172

    Google Scholar 

  • Schmidt EJ, Velasco KK, Nur AM (1996) Quantifying solid-fluid interafacial phenomena in porous rocks with proton nuclear magnetic resonance. J Appl Phys 59:2788–2797

    Google Scholar 

  • Schreiner LJ, Mactavish JC, Miljkovic L, Pintar MM, Blinc R, Lahajnar G, Lasic D, Reeves LW (1985) NMR Line Shape-Spin-Lattice Relaxation Correlation Study of Portland Cement Hydration. J Am Ceram Soc 68:10–16

    Google Scholar 

  • Schreyer W (1985) Experimental studies on cation substitutions and fluid incorporation in cordierite. Bull Mineral 108:273–291

    Google Scholar 

  • Seidl V, Knop O, Falk M (1969) Infrared studies of water in crystalline hydrates: gypsum, CaSO4 · 2 H2O. Can J Chem 47:1361–1368

    Google Scholar 

  • Shannon Rd, Mariano AN, Rossman GR (1992) Effect of H2O and CO2 on dielectric properties of single crystal cordierite and comparison with polycrystalline cordierite. J Am Ceram Sco 75:2395–2399

    Google Scholar 

  • Shen A, Keppler H (1996) Infrared spectroscopy of hydrous silicate melts to 1000° and 10 kbars: direct observation of water speciation in a diamond anvil cell. Am Mineral 80

  • Sherriff BL, Grundy HD, Hartman JS, Hawthorne FC, Cerny P (1991) The incorporation of alkalis in beryl: multi-nuclear MAS NMR and crystal structure study. Can Mineral 29:271–285

    Google Scholar 

  • Stebbins JF (1988) NMR Spectroscopy and dynamic processes in mineralogy and geochemistry. In: Hawthorne FC (ed) Spectroscopic methods in Mineralogy and Geology. Rev Mineral 18:405–427

  • Stout JH (1975) Apparent effects of molecular water on the lattice geometry of cordierite. Am Mineral 60:229–234

    Google Scholar 

  • Stout JH (1976) Apparent effects of molecular water on the lattice geometry of cordierite: A reply. Am Mineral 61:1041–1044

    Google Scholar 

  • Strens RG (1974) The common chain, ribbon, and ring silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineral Soc Lond 305–330:539 pp

  • Stuckenschmidt E, Fuess H, Stockmeyer R (1988a) Water motion in Harmotone — studied by incoherent inelastic and quasielastic neutron scattering. Ber Bunsengesellsch Phys Chem 92:1083–1089

    Google Scholar 

  • Stuckenschmidt E, Fuess H, Pechar F (1988b) Infrared Absorption and reflection spectroscopy on the natural zeolite harmotome. Phys Chem Minerals 15:461–464

    Google Scholar 

  • Sugitani Y, Nagashima K, Fujiwara S (1966) The NMR analysis of the water of crystallization in beryl. Bull Chem Soc Jap 39:672–674

    Google Scholar 

  • Thaper CI, Dasannacharya BA, Sequeira A, Iyengar PK (1970) Observation of librational modes of water molecules in single crystal hydrates by neutron scattering. Solid State Comm 8:497–499

    Google Scholar 

  • Tomkinson J (1992) The vibrations of hydrogen bonds. Spectrochim Acta 48A:329–348

    Google Scholar 

  • Tsang T, Ghose S (1972) Nuclear magnetic resonance of 1H and 27Al and Al-Si order in low cordierite, Mg2Al4Si5O18 · nH2O. J Chem Phys 56:3329–3332

    Google Scholar 

  • Winkler B, Hennion B (1994) Low temperature dynamics of molecular H2O in Bassanite, gypsum and cordierite investigated by high resolution incoherent inelastic neutron scattering. Phys Chem Minerals 21:539–545

    Google Scholar 

  • Winkler B, Coddens G, Hennion B (1994) Movement of channel water in cordierite observed with quasielastic neuron scattering. Am Mineral (in press)

  • Wood DL, Nassau K (1967) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am Mineral 53:777–800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, B. The dynamics of H2O in minerals. Phys Chem Minerals 23, 310–318 (1996). https://doi.org/10.1007/BF00207783

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207783

Keywords

Navigation