Plant Growth Regulation

, Volume 13, Issue 1, pp 21–29 | Cite as

Evidence for the presence of plant growth regulators in commercial seaweed products

  • I. J. Crouch
  • J. van Staden


Although seaweeds and various seaweed products have been utilized in agricultural practices for many years, the precise mechanism by which they elicit their beneficial growth responses is still not fully understood. The amount of mineral nutrients in commercial preparations cannot account for the magnitude of the responses. Some other factor, such as the presence of endogenous plant growth regulators is, therefore, thought to be involved. This paper reviews the literature supporting evidence for the occurrence of plant hormones in commercial seaweed preparations.

Key words

HPLC seaweed concentrate plant hormones 



seaweed concentrate


plant growth regulator


gas chromatography/mass spectrometry


proton nuclear magnetic resonance


high performance liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe H, Uchiyama M and Sato R (1972) Isolation and identification of native auxins in marine algae. Agric Biol Chem 36: 2259–2260Google Scholar
  2. 2.
    Abe H, Uchiyama M and Sato R (1974) Isolation of phenylacetic acid and its p-hydroxy derivative as auxin-like substances from Undaria pinnatifida. Agr Biol Chem 38: 897–898Google Scholar
  3. 3.
    Abetz P (1980) Seaweed extracts: Have they a place in Australian agriculture or horticulture? J Aust Inst Agric Sci 46: 23–29Google Scholar
  4. 4.
    Aitken JB and Senn TL (1965) Seaweed products as a fertilizer and soil conditioner for horticultural crops. Bot Mar 8: 144–148Google Scholar
  5. 5.
    Augier H (1972) Contribution à l'etude biochimique et physiologique des substances de croissance chez les algues. These Doct d'Etat, MarseilleGoogle Scholar
  6. 6.
    Augier H (1974) Les phytohormones des algues. I. Etude biochimique. Ann Sci Nat Bot Biol Veg 15: 1–64Google Scholar
  7. 7.
    Angier H (1974) Les phytohormones des algues. II. Etude physiologique. Ann Sci Nat Biol Veg 15: 119–180Google Scholar
  8. 8.
    Augier H (1976) Les hormones des algues. Etat actuel des connaisances. I. Recherche et tentatives d'identification des auxines. Bot Mar 19: 127–143Google Scholar
  9. 9.
    Augier H (1976) Les hormones des algues. Etat actuel des connaisances. II. Recherche et tentatives d'identification des gibberellines, des cytokinines et de diverses autre substances de nature hormonales. Bot Mar 19: 245–254Google Scholar
  10. 10.
    Augier H and Harada H (1972) Présence d'hormones de type cytokinine dans la thalle des algues marines. Comptes Rendus des Seances de l'Academie des Sciences (Paris) 275:1765–1768Google Scholar
  11. 11.
    Augier H and Harada H (1973) Contribution á l'étude des cytokinines endogenes des algues. Tethys 5: 81–93Google Scholar
  12. 12.
    Bentley JA (1960) Plant hormones in Marine Phytoplankton, Zooplankton and Sea Water. J Mar Biol Assoc UK 39: 433–444Google Scholar
  13. 13.
    Bentley-Mowat JA and Reid SM (1968) Investigation of the radish leaf bioassay for kinetins and demonstration of kinin-like substances in algae. Ann Bot 32: 23–32Google Scholar
  14. 14.
    Bernart M and Gerwick WH (1990) 3(hydroxyacetyl) indole, a plant growth regulator from the Oregon red alga Prionitis lanceolata. Phytochemistry 29: 3697–3698Google Scholar
  15. 15.
    Blunden G (1977) Cytokinin activity of seaweed extracts. In: Faulkner DL and Fenical WH (eds) Marine Natural Products Chemistry. New York: Plenum Publishing CorporationGoogle Scholar
  16. 16.
    Blunden G and Wildgoose PB (1977) The effects of aqueous seaweed extract and kinetin on potato yields. J Sci Food Agric 28: 121–125Google Scholar
  17. 17.
    Blunden G, Gordon SM and Keysell GR (1982) Lysine betaine and other quaternary ammonium compounds from British species of the laminariales. J Nat Prod 45: 449–452Google Scholar
  18. 18.
    Blunden G, Jones EM and Passam HC (1978) Effects of post-harvest treatment of fruit and vegetables with cytokinin-active seaweed extracts and kinetin solutions. Bot Mar 21: 237–240Google Scholar
  19. 19.
    Blunden G, Rogers DJ and Barwell CJ (1984) Biologically active compounds from the British marine algae. In: Krogsgaard-Larsen CP, Brogger S, Christensen S and Kofod H (eds) Natural Products and Drug Development. Alfred Benzon Symposium Vol 20, pp 179–190. Copenhagen: MunksgaardGoogle Scholar
  20. 20.
    Blunden G, Gordon SM, Smith BE and Fletcher RL (1985) Quaternary ammonium compounds in species of the Fucaceae (Phaeophyceae) from Britain. Br phycol J 20: 105–108Google Scholar
  21. 21.
    Blunden G, Cripps AL, Gordon SM, Mason TG and Turner CH (1986) The characterisation and quantitative estimation of betaines in commercial seaweed extracts. Bot Mar 29: 155–160Google Scholar
  22. 22.
    Booth E (1964) Trace elements and seaweed. Proc Int Seaweed Symp 4: 385–392Google Scholar
  23. 23.
    Booth E (1966) Some properties of seaweed manures. Proc Int Seaweed Symp 5: 349–357Google Scholar
  24. 24.
    Booth E (1969) The manufacture and properties of liquid seaweed extracts. Proc Int Seaweed Symp 6: 655–662Google Scholar
  25. 25.
    Boyer GL and Dougherty SS (1988) Identification of abscisic acid in the seaweed Ascophyllum nodosum. Phytochemistry 27: 1521–1522Google Scholar
  26. 26.
    Bradley PM (1991) Plant hormones do have a role in controlling growth and development of algae. J Phycol 27: 317–321Google Scholar
  27. 27.
    Brain KR, Chalopin MC, Turner TD, Blunden G and Wildgoose PB (1973) Cytokinin activity of commercial aqueous seaweed extract. Plant Sci Lett 1: 241–245Google Scholar
  28. 28.
    Button EF and Noyes CF (1964) Effect of seaweed extract upon the emergence and survival of seedlings of creeping red fescue. Agron J 60: 324–326Google Scholar
  29. 29.
    Crouch IJ (1991) The effect of seaweed concentrate on plant growth. Ph D Thesis, Department of Botany, University of Natal, Pietermaritzburg, South AfricaGoogle Scholar
  30. 30.
    Crouch IJ and Van Staden J (1991) Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. J Plant Physiol 137: 319–322Google Scholar
  31. 31.
    Crouch IJ, Beckett RP and Van Staden J (1990) Effect of seaweed concentrate on the growth and mineral nutrition of nutrient stressed lettuce. J appl Phycol 2: 269–272Google Scholar
  32. 32.
    Crouch IJ, Smith MT, Van Staden J, Lewis MJ and Hoad GV (1992) Identification of auxins in a commercial seaweed concentrate. J Plant Physiol 138: 590–594Google Scholar
  33. 33.
    Dekker J (1963) Effect of cytokinin on powdery mildew. Nature 197: 1027–1028Google Scholar
  34. 34.
    Driggers BF and Marucci PE (1964) Observation of the effect of seaweed extracts on peaches and strawberries. Hortic News 45: 4–15Google Scholar
  35. 35.
    Ehressmann DW, Deig EF, Hatch MT, Disalvo LH and Vedros NA (1977) Antiviral substances from California marine algae. J Phycol 13: 37–40Google Scholar
  36. 36.
    Ehressmann DW, Deig EF and Hatch MT (1979) Antiviral properties of algal polysaccharides and related compounds. In: Hoppe HA, Levring T and Tanaka Y (eds) Marine algae in pharmaceutical science, pp 109–115. Berlin: Walter der Gruyter and CoGoogle Scholar
  37. 37.
    Farooqi AHA, Shukla YN, Shukla A and Bhakuni DS (1991) Cytokinins from marine organisms. Phytochemistry 29: 2061–2063Google Scholar
  38. 38.
    Featonby-Smith BC and Van Staden J (1983) The effect of seaweed concentrate and fertilizer on the growth of Beta vulgaris. Z Pflanzenphysiol 112: 155–162Google Scholar
  39. 39.
    Featonby-Smith BC and Van Staden J (1983) The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci Hortic 20: 137–146Google Scholar
  40. 40.
    Featonby-Smith BC and Van Staden J (1984) The effect of seaweed concentrate and fertilizer on growth and the endogenous cytokinin content of Phaseolus vulgaris. S Afr J Bot 3: 375–379Google Scholar
  41. 41.
    Featonby-Smith BC and Van Staden J (1984) Identification and seasonal variation of endogenous cytokinins in Ecklonia maxima (Osbeck) Papenf. Bot Mar 27: 524–531Google Scholar
  42. 42.
    Fenical W (1982) Investigation of benthic algae as a resource for new pharmaceuticals and agricultural chemicals. Proceedings Joint United States — China Phycological Symposium, Qingdao, People's Republic of China, November 1981Google Scholar
  43. 43.
    Finnie JF and Van Staden J (1985) The effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J Plant Physiol 120: 215–310Google Scholar
  44. 44.
    Francki RIB (1960) Manurial value of seaweeds: I. Effects of Pachymenia himantophora and Durvillea antartica meals on plant growth. Plant Soil 12: 297–310Google Scholar
  45. 45.
    Fries Land \0berg S (1978) Morphogenetic effects of phenylacetic and p-OH-phenylacetic acid on the green algae Enteromorpha compressa (L.) Grev. in axenic culture. Z Pflanzenphysiol 88: 383–388Google Scholar
  46. 46.
    Glass ADM (1989) Plant nutrition. An introduction to current concepts, 234pp. Boston: Jones and BartlettGoogle Scholar
  47. 47.
    Gopala RP (1984) Gibberellin-like behaviour of α-tocopherol in green gram Vigna radiata. Geobios 11: 21–25Google Scholar
  48. 48.
    Gupta AB and Shukla AC (1969) Effect of algal extracts of Phormidium species on growth and development of rice seedlings. Hydrobiologia 34: 77–84Google Scholar
  49. 49.
    Güven KC, Güler E and Yücel Y (1976) Vitamin B12 content of Gelidium capillaceum Kütz. Bot Mar 19: 395–396Google Scholar
  50. 50.
    Haissig BE (1974) Influences of auxins and auxin synergists on adventitious root primordium initiation and development. N Z J For Sci 2: 311–323Google Scholar
  51. 51.
    Hamana K, Matsuzaki S, Niitsu M, Samejima K and Nagashima H (1990) Polyamines of inicellular thermoacidophillic red alga, Cyanidium caldarium. Phytochemistry 29: 377–380Google Scholar
  52. 52.
    Hart LC (1982) Auxins as plant growth regulators in the marine alga Pelagophycus porra (Leman) Setchell (Phaeophyta, Laminales). Ph D Thesis, University of Southern California, Los Angeles. 255ppGoogle Scholar
  53. 53.
    Hartmann HT and Kester DE (1983) Plant Propagation: Principles and Practices, Fourth Edition, pp 234–297. Englewood Cliffs, U.S.A: Prentice HallGoogle Scholar
  54. 54.
    Hirsch R, Hartung W and Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102: 326–334Google Scholar
  55. 55.
    Hoppe HA and Levring T (1982) Marine algae in pharmaceutical science. Vol 2, p 309. New York: Walter de Gruyer, BerlinGoogle Scholar
  56. 56.
    Hussian A and Boney AD (1973) Hydrophylic growth inhibitors from Laminaria and Ascophyllum. New Phytol 72: 403–410.Google Scholar
  57. 57.
    Huvé H and Pelligrini M (1969) Contribution á l'étude chimique de quelques espèces du genre Laurencia (Céra-mailes, Rhodemélacées). Proc Int Seaweed Symp 6: 483–492Google Scholar
  58. 58.
    Jacobs WP, Falkenstein K and Hamilton RH (1985) Nature and amount of auxin in algae: IAA from extracts of Caulerpa paspaloides (Siphonales). Pl Physiol 78: 844–848Google Scholar
  59. 59.
    Jennings RC (1968) Gibberellins as endogenous growth regulators in green and brown algae. Planta 80: 34–42Google Scholar
  60. 60.
    Jennings RC (1969) Cytokinins as endogenous growth regulators in the algae Ecklonia (Phaeophyta) and Hypnea (Rhodophyta). Aust J Biol Sci 22: 621–627Google Scholar
  61. 61.
    Jennings RC and McComb AJ (1967) Gibberellins in the red alga Hypnea musciformis (WULF.) LAMOUR. Nature (London) 215: 872–873Google Scholar
  62. 62.
    Jensen A (1969) Tocopherol content of seaweed and seaweed meal. I. Analytical methods and distribution of tocopherols in benthic algae. J Sci Food Agric 20: 449–453Google Scholar
  63. 63.
    Kanazawa A (1963) Vitamins in algae. Bull JPN Soc Sci Fish 29: 713–731Google Scholar
  64. 64.
    Kato J, Purves WK and Phinney BO (1962) Gibberellin-like substances in plants. Nature (London) 196: 687–688Google Scholar
  65. 65.
    Kentzer TR, Synak R, Burkiewicz K and Banas A (1980) Cytokinin-like activity in sea water and Fucus vesiculosis L. Biol Plant 22: 218–225Google Scholar
  66. 66.
    Khaleafa AF, Kharboush MAM, Metwalli A, Moshen AF and Serwi A (1975) Antibiotic (fungicidal) action from extracts of some seaweds. Bot Mar 18: 163–165Google Scholar
  67. 67.
    Kingman AR and Moore J (1982) Isolation, purification and quantification of several growth regulating substances in Ascophyllum nodosum (Phaeophyta). Bot Mar 25: 149–153Google Scholar
  68. 68.
    Letham DS (1978) Cytokinins. In: Letham DS, Goodwin PB and Higgins TJ (eds). Phytohormones and Related Compounds: A Comprehensive Treatise I, pp 205–251. Amsterdam: Elsevier/Holland, ISBN 0–444–80053–0Google Scholar
  69. 69.
    Lynn LB (1972) The chelating properties of seaweed extract Ascophyllum nodosum vs. Macrocystis perifera on the mineral nutrition of sweet peppers, Capsicum annuum. M.Sc. Thesis, Clemson University, ClemsonGoogle Scholar
  70. 70.
    Metting B, Zimmerman WJ, Crouch I and Van Staden J (1991) Agronomic uses of seaweed and microalgae. In: Akatsuka I (ed) Introduction to Applied Phycology, pp 269–307. The Hague, Netherlands: SPB Academic Publishing bvGoogle Scholar
  71. 71.
    Miller CO (1963) Kinetin and kinetin-like compounds. In: Linskens HF and Tracy MV (eds) Modern Methods of Plant Analysis, Vol 6: 194–202. Berlin: Springer-VerlagGoogle Scholar
  72. 72.
    Mitchell R (1963) Addition of fungal cell-wall components to soil for biological disease control. Phytopathology 53: 1068–1071Google Scholar
  73. 73.
    Mooney PA and Van Staden J (1986) Algae and cytokinins. J Plant Physiol 123: 1–21Google Scholar
  74. 74.
    Mooney PA and Van Staden J (1987) Tentative identification of cytokinins in Sargassum heterophyllum (Phaeophyceae). Bot Mar 30: 323–325Google Scholar
  75. 75.
    Mowat JA (1963) Gibberellin-like substances in algae. Nature 200: 453–455Google Scholar
  76. 76.
    Mowat JA (1964) Auxins and gibberellins in marine algae. Proc Int Seaweed Symp 4: 352–359Google Scholar
  77. 77.
    Mowat JA (1965) A survey of results on the occurrence of auxins and gibberellins in algae. Bot Mar 8: 149–155Google Scholar
  78. 78.
    Munda M and Gubensek F (1975) The amino-acid composition of some common marine algae from Iceland. Bot Mar 19: 85–92Google Scholar
  79. 79.
    Naito K, Tsuji H and Hatakeyama I (1978) Effects of benzyladenine on DNA, RNA, protein and chlorophyll contents in intact bean leaves: Differential responses to benzyladenine according to plant age. Physiol Plant 43: 367–371Google Scholar
  80. 80.
    Nelson WR and Van Staden J (1984) The effect of seaweed concentrate on the growth of nutrient-stressed, greenhouse cucumbers. HortScience 19: 81–82Google Scholar
  81. 81.
    Nelson WR and Van Staden J (1985) 1-Aminocyclopropane-l-carboxylic acid in seaweed concentrate. Bot Mar 28: 415–417Google Scholar
  82. 82.
    Niemann DI and Dörfliing K (1980) Growth inhibitors and growth promotors in Enteromorpha compressa (Chlorophyta). J Phycol 16: 383Google Scholar
  83. 83.
    Okami Y (1982) Potential use of marine organisms for antibiotics and enzyme production. Pure Appl Chem 54: 1961–1962Google Scholar
  84. 84.
    Padmini Screenivasa Rao P, Screenivasa Rao P and Karmarkar SM (1986) Antibacterial substances from brown algae. II. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii Setchell et Gardner. Bot Mar 29: 503–507Google Scholar
  85. 85.
    Padmini Screenivasa Rao P, Screenivasa Rao P and Karmarkar SM (1988) Antibacterial activity of Indian species of Sargassum. Bot Mar 31: 295–298Google Scholar
  86. 86.
    Pedersen M (1973) Identification of a cytokinin, 6-(3-methyl-2-butenylamino) purine in sea water and the effects of cytokinins on brown algae. Physiol Plant 28: 101–105Google Scholar
  87. 87.
    Pedersen M and Fridborg G (1972) Cytokinin-like activity in sea water from Fucus-Ascophyllum zone. Experièntia 28: 111–112Google Scholar
  88. 88.
    Pellegrini M (1968) Contribution à l'étude chimique des algues méditerranéennes (Fractions azotées, acides aminés protidiques). Thèse de Spécialité, Aix-Marseille, pp 156Google Scholar
  89. 89.
    Pellegrini M (1969) Contribution à l'étude chimique des algues méditerranéennes. Compositions en acides aminés de Falkenbergia rufolanosa (Harvey) Schmitz et d'Aparagopsis armata Harvey. Bot mar 12: 179–184Google Scholar
  90. 90.
    Pesando D and Caram B (1984) Screening of marine algae from the French Mediterranean Coast for antibacterial and antifungal activity. Bot Mar 27: 381–386Google Scholar
  91. 91.
    Pozsar BI, El Hammady M and Kiraly Z (1967) Cytokinin effect of benzyladenine: Increase of nucleic acid and protein synthesis in bean leaves. Nature 214: 273–274Google Scholar
  92. 92.
    Quastel JH and Webley DM (1947) The effects of the addition to soil of alginic acid and other forms of organic matter on soil aeration. J Agric Sci 37: 257–266Google Scholar
  93. 93.
    Radley M (1961) Gibberellin-like substances in plants. Nature 191: 684–685Google Scholar
  94. 94.
    Rhinehart KL and Shield L (1978) Marine-derived antibiotics. In: Weintein MJ and Wagman GH (eds) Antibiotics: Isolation, separation and purification, pp 309–385. Amsterdam: ElsevierGoogle Scholar
  95. 95.
    Sanderson KJ and Jameson PE (1986) The cytokinins in a liquid seaweed extract: Could they be the active ingredients? In: Luckwill LC (ed) Fifth International Symposium on Growth Regulators in Fruit Production 1. Acta Hortic 179: 113–116Google Scholar
  96. 96.
    Sanderson KJ, Jameson PE and Zabkiewicz JA (1987) Auxin in a seaweed extract: Identification and quantification of indole-3-acetic acid by gas chromatography-mass spectrometry. J Plant Physiol 129: 363–367Google Scholar
  97. 97.
    Schiewer U (1967) Auxinvorkommen und Auxinstoflwechsel bei mehrzelligen Ostseealgen. I. Zum Vorkommen von Indol-3-Essigsäure. Planta 74: 313–323Google Scholar
  98. 98.
    Schiewer U and Libbert E (1965) Indoleacetamide — an intermediate in the formation of indole acetic acid from indoleacetonitrile in the alga Furcellaria. Planta 66: 377–380Google Scholar
  99. 99.
    Senn TL, Martin JA, Crawford JH and Derting CW (1961) The effect of Norwegian seaweed (Ascophyllum nodosum) on the development and composition of certain horticultural and special crops. South Carolina Agricultural Experimental Station, Research serial number 23Google Scholar
  100. 100.
    Shaw M, Bhattacharya PK and Quick WA (1965) Chlorophyll, protein and nucleic acid levels in detached, senescing wheat leaves. Can J Bot 43: 739–746Google Scholar
  101. 101.
    Simpson K and Hayes SF (1958) The effect of soil conditioners on plant growth and soil structure. J Sci Food Agric 9: 163–170Google Scholar
  102. 102.
    Stephenson WA (1968) Seaweed in agriculture and horticulture. Faber and Faber, LondonGoogle Scholar
  103. 103.
    Stephenson WM (1966) The effect of hydrolysed seaweed on certain plant pests and diseases. Proc Int Seaweed Symp 5: 405–415Google Scholar
  104. 104.
    Sumera FC and Cajipe GJB (1981) Extraction and partial charactisation of Auxin-like substances from Sargassum polycystum C. Ag. Bot Mar 24: 157–163Google Scholar
  105. 105.
    Tay SAB, Macleod JK, Palni LMS and Letham DS (1985) Detection of cytokinins in a seaweed extract. Phytochemistry 24: 2611–2614Google Scholar
  106. 106.
    Tay SAB, Palni LMS and Macleod JK (1987 Identification of cytokinin glucosides in a seaweed extract. J Plant Growth Regul 5: 133–138Google Scholar
  107. 107.
    Taylor IEP and Wilkinson AJ (1977) The occurrence of gibberellin-like substances in algae. Phycologia 16: 37–42Google Scholar
  108. 108.
    Temple WD and Bomke AA (1989) Effects of kelp (Macrocystis integrifolia and Ecklonia maxima) foliar applications on bean crop yield. Plant Soil 117: 85–92Google Scholar
  109. 109.
    Tietz SAB, Ruttkowski R, Köhler R and Kasprik W (1989) Further investigations on the occurrence and effects of abscisic acid in algae. Biochem Physiol Pflanzen 184: 259–266Google Scholar
  110. 110.
    Vacca DD and Walsh RA (1954) The antibacterial activity of an extract obtained from Ascophyllum nodosum. J Am Pharm Assoc 43: 24–26Google Scholar
  111. 111.
    Van den Driessche Th, Kevers C, Collet M and Gaspar Th (1988) Acetabularia mediterranea and ethylene production in relation with development, circadian rhythms in emission and response to external application. J Plant Physiol 133:635–639Google Scholar
  112. 112.
    Van Overbeek J (1940) Auxin in marine algae. Pl Physiol Lancaster 15: 291–299Google Scholar
  113. 113.
    Wheeler AW (1973) Endogenous growth substances. Rep Rothamsted Exp Stn Part 1: 101–102Google Scholar
  114. 114.
    Wilczek CA and Ng TJ (1982) Promotion of seed germination in table beet by an aqueous seaweed extract. HortScience 17: 629–630Google Scholar
  115. 115.
    Wildgoose PB, Blunden G and Jewers K (1978) Seasonal variation in gibberellin activity of some species of Fucaceae and Laminariaceae. Bot Mar 21: 63–65Google Scholar
  116. 116.
    Williams DC, Brain KR, Blunden G, Wildgoose PB and Jewers K (1976) Plant growth regulatory substances in commercial seaweed extracts. Proc Int Seaweed Symp 8: 59–63Google Scholar
  117. 117.
    Yamamoto T and Ishibashi M (1972) The content of trace elements in seaweds. Proc Int Seaweed Symp 7: 511–514Google Scholar
  118. 118.
    Yamamoto T, Otsuka Y, Okazaki M and Okamoto Kl (1979) The distribution of chemical elements in algae. In: Hoppe HA, Levring T and Tanaka Y (eds) Marine Algae in Pharmaceutical Science, pp 569–607. New York: Walter de Gruyte, BerlinGoogle Scholar
  119. 119.
    Zhang W, Yamane H, Takahashi N, Chapman DJ and Phinney BO (1989) Identification of a cytokinin in the green algae Chara globularis. Phytochemistry 28: 337–338Google Scholar
  120. 120.
    Zhang W., Chapman DJ, Phinney BO, Spray CR, Yamane H and Takahashi N (1991) Identification of cytokinins in Sargassum muticum (Phaeophyta) and Porphyra perforata (Rhodophyta). J Phycol 27: 87–91Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • I. J. Crouch
    • 1
  • J. van Staden
    • 1
  1. 1.UN/FRD Research Unit for Plant Growth and Development, Department of BotanyUniversity of NatalPietermaritzburgRepublic of South Africa

Personalised recommendations