Skip to main content
Log in

Brain stem innervation of the caudal neurosecretory system

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The innervation of the caudal neurosecretory system of Poecilia sphenops (black molly) was studied by use of the retrograde horseradish peroxidase (HRP) method. The structure of the caudal neurosecretory system in this species was well suited for application of HRP procedures. Acrylamide/HRP gel implants were placed in the nucleus of the caudal neurosecretory system. Two neuronal groups which contained HRP filled cells were found in the brain stem. Bilateral projections originate from the dorsal tegmentum of the midbrain and the reticular nucleus of the medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audet C, Chevalier G (1981) Monoaminergic innervation of the caudal neurosecretory system of the brook trout Salvelinus fontinalis in relation to osmotic stimulation. Gen Comp Endocrinol 45:189–203

    Google Scholar 

  • Bartelmez GW (1915) Mauthner's cell and the nucleus motorius tegmenti. J Comp Neurol 25:87–128

    Google Scholar 

  • Baumgarten HG, Falck B, Wartenberg H (1970) Adrenergic neurons in the spinal cord of the pike (Esox lucius) and their relation to the caudal neurosecretory system. Z Zellforsch 107:479–498

    Google Scholar 

  • Bennett MVL, Fox S (1962) Electrophysiology of caudal neurosecretory cells in the skate and fluke. Gen Comp Endocrinol 2:77–95

    Google Scholar 

  • Bern HA (1969) Urophysis and caudal neurosecretory system. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol II. Academic Press, New York, p 399

    Google Scholar 

  • Bern HA, Yagi K, Nishioka RS (1965) Structure and function of the caudal neurosecretory system of fishes. Arch Anat Microsc Morphol Exp 54:217–238

    Google Scholar 

  • Eaton RC, Farley RD (1973) Development of the Mauthner neurons in embryos and larvae of the zebrafish, Brachydanio retio. Copeia 1973:673–682

    Google Scholar 

  • Fridberg G (1963) Electron microscopy of the caudal neurosecretory system in Leuciscus rutilus and Phoxinus phoxinus. Acta Zool (Stockh) 44:245–267

    Google Scholar 

  • Fridberg G, Bern HA, Nishioka R (1966) The caudal neurosecretory system of the isospondylous teleost, Albula vulpes, from different habitats. Gen Comp Endocrinol 6:195–212

    Google Scholar 

  • Fryer JN, Woo NYS, Gunther RL, Bern HA (1978) Effect of urophysial homogenates on plasma ion levels in Gillichthys mirabilis (Teleostei: Gobiidae). Gen Comp Endocrinol 35:238–244

    Google Scholar 

  • Griffin G, Watkins LR, Mayer DJ (1979) HRP pellets and slow-release gels: two new techniques for greater localization and sensitivity. Br Res 168:596–601

    Google Scholar 

  • Kimmel CB, Powell SL (1980) Brain neurons that project to the spinal cord in young larvae of the zebrafish. Soc Neurosci Abstr 6:628

    Google Scholar 

  • Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127

    Google Scholar 

  • Kobayashi Y, Ichikawa T, Kobayashi J (1979) Innervation of the caudal neurosecretory system of the teleost. Gunma Sym Endocrinol 16:81–86

    Google Scholar 

  • Kobayashi Y, Kobayashi H, Ohshiro S, Osumi Y, Fujiwara M (1980) Monoaminergic innervation of the caudal neurosecretory system of the carp, Cyprinus carpio. Zb Vet Med C Anat Histol Embryol 9:65–72

    Google Scholar 

  • Kriebel RM (1980) The caudal neurosecretory system of Mollienesia sphenops: Light and electron microscopy. J Morphol 165:157–165

    Google Scholar 

  • Kriebel RM, O'Brien JP (1980) Afferent projections to the caudal neurosecretory cells in P. sphenops. Soc Neurosci Abstr 6:456

    Google Scholar 

  • Kriebel RM, Burke JD, Meetz GD (1979) Morphological features of the caudal neurosecretory system in the blueback herring, Pomolobus aestivales. Anat Rec 195:553–572

    Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416

    Google Scholar 

  • Lederis K, Bern HA, Medakovic M, Chan DKO, Nishioka RS, Letter A, Swanson D, Gunther R, Resanovic M, Horne B (1974) Recent functional studies on the caudal neurosecretory system of teleost fishes. In: Knowles F, Vollrath L (eds) Neurosecretion: The final neuroendocrine pathway. Springer, New York, p 94

    Google Scholar 

  • Loretz CA, Bern HA (1980) Ion transport by the urinary bladder of the gobiid teleost, Gillichthys mirabilis. Am J Physiol 239 (Regulatory Integrative Comp Physiol 8):R415-R423

    Google Scholar 

  • Loretz CA, Bern HA (1981) Stimulation of sodium transport across the teleost urinary bladder by urotensin II. Gen Comp Endocrinol 43:325–331

    Google Scholar 

  • Marshall WS, Bern HA (1979) Teleostean urophysis: urotensin II and ion transport across the isolated skin of a marine teleost. Science 204:519–521

    Google Scholar 

  • Marshall WS, Bern HA (1981) Active chloride transport by the skin of a marine teleost is stimulated by urotensin I and inhibited by urotensin II. Gen Comp Endocrinol 43:484–491

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurochemistry: A noncarcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Morita H, Ishibashi T, Yamashita S (1961) Synaptic transmission in neurosecretory cells. Nature (Lond) 191:183

    Google Scholar 

  • Nieuwenhuys R (1977) The brain of the lamprey in a comparative perspective. Ann NY Acad Sci 299:97–145

    Google Scholar 

  • Nilaver G, Zimmerman EA, Wilkins J, Michaels J, Hoffman D, Silverman A (1980) Magnocellular hypothalamic projections to lower brain stem and spinal cord of the rat. Neuroendocrinol 30: 150–158

    Google Scholar 

  • Parent A, Dube L, Braford MR, Northcutt RG (1978) The organization of monoamine-containing neurons in the brain of the sunfish (L. gibbosus) as revealed by fluorescence microscopy. J Comp Neurol 182:495–516

    Google Scholar 

  • Sano Y, Iida T, Taketomo S (1966) Weitere elektronenmikroskopische Untersuchungen am kaudalen neurosekretorischen System von Fischen. Z Zellforsch 75:328–338

    Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R (1976) Topological analysis of the brain stem of the lungfish Lepidosiren paradoxa. J Comp Neurol 187:589–612

    Google Scholar 

  • Stefanelli A, Camposano A (1946) I Centri tegmentali dell'anguilla e la relazioni degli elementi giganti del tegmento dei ciclostomi, dei pesci e degli anfibi; recerche sul sistema mauthneriano. Pub Staz Zool Napoli 20:19–45

    Google Scholar 

  • Swanson DD, Nishioka RS, Bern HA (1975) Aminergic innervation of the cranial and caudal neurosecretory systems in the teleost Gillichthys mirabilis. Acta Zool (Stockh) 56:225–237

    Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinol 31:410–417

    Google Scholar 

  • Yagi K, Bern HA (1965) Electrophysiologic analysis of the response of the caudal neurosecretory system of Tilapia mossambica to osmotic manipulations. Gen Comp Endocrinol 5:509–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by PHS 5429-19-4 and BNS 8206452

The authors wish to thank Drs. R. Parsons, S. Freedman and J. Wells for reading this report and A. Angel for photographic assistance

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, J.P., Kriebel, R.M. Brain stem innervation of the caudal neurosecretory system. Cell Tissue Res. 227, 153–160 (1982). https://doi.org/10.1007/BF00206338

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206338

Key words

Navigation