Skip to main content
Log in

Magnetism in cassiterite

Its source and paragenetic significance as exemplified by a prominent MalayanTin deposit

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Zusammenfassung

Die großen Kassiterit-Kristalle der Pelepah Kanan-Zinnmine in Zentral-Johore unterscheiden sich von jenen von Aberfoyle und Renison Bell, Tasmania, durch starke Farbzonen und einen bemerkbaren magnetischen Substanz-Anteil. Die Fraktionen verschiedener magnetischer Suszeptibilität zeigen Beziehungen zwischen Färbung und magnetischen Eigenschaften. Mössbauer-Spektralanalyse ergab, daß eisenhaltige Einschlüsse in der dunkelbraunen magnetischen Fraktion ein höheres Eisen(II)/(III)-Ion Verhältnis als in der farblosen Fraktion aufweisen; nur unnachweisbar kleine Mengen (<10%) der Eisenatome in diesen Einschlüssen können eine magnetisch geordnete Umgebung haben. Obschon es keine nennenswerten Unterschiede der Einheitszellgröße zwischen den beiden Fraktionen gibt, sind die Elektronenbeugungsabstände, welche sich nicht Kassiterit zuordnen lassen, in der dunklen magnetischen Fraktion vergleichbar mit denen des paramagnetischen FeSn(OH)6, und in der farblosen, nicht magnetischen Fraktion wahrscheinlich mit Lepidokrit (γ-FeOOH). Bei 600°C (in Luft) scheinen die feinverteilten Teilchen von hydratisiertem Ferro-stannat zu koagulieren und bilden eine rhomboedrische Phase, die weitgehend Ilmenit gleicht. Es wird angenommen, daß diese Phase wasserfreies Ferro-Stannat ist und eine Reihe von Verbindungen mit Hämatit bildet, analog zu Fe2−xTixO3. Für x ungefähr 2/3 wird diese Serie merklich ferrimagnetisch. Daher dürfte die Magnetisation in diesen Kassiteritmustern sich vor allem aus dem Vorhandensein einer Zinn-Phase herleiten, welche in kleinen, entwässerten Stellen im primären Ferro-stannat-Hydrat vorkommt. Diese Schlüsse werden weiter gestützt durch thermogravimetrische und Infrarot-Studien sowie Thermo-Demagnetisierungsanalysen. Die Resultate der Thermo-Demagnetisation weisen auf die Möglichkeit hin, daß im Kassiterit eine Serie von Verbindungen mit Curie-Punkten im Bereich von 50–250°C vorliegt, was gut übereinstimmt mit dem magnetischen Bereich der Fe2−xTixO3-Serie. — Ausgehend von den neuen Befunden wird ein Mechanismus für die Entstehung der Zonierung im Kassiterit umrissen.

Abstract

Large cassiterite crystals from the Pelepah Kanan tin mine in central Johore differ from those at Aberfoyle and Renison Bell, Tasmania, in showing strong colour zoning and possessing a small but conspicuous magnetic fraction. By separating crystals from these localities into fractions of varying magnetic susceptibility, there is found to be a distinct relationship between colouration and the magnetic properties of cassiterite. Furthermore, Mössbauer spectroscopy reveals that ferroan inclusions in the dark brown magnetic fraction contain a higher ferrous to ferric ion ratio than in the colour-less fraction and that only undetectable amounts (less than about 10%) of the iron atoms in these inclusions can have a magnetically ordered environment. Although no significant differences in unit cell dimensions between the two fractions are apparent, electron diffraction d-spacings not assignable to cassiterite are found to compare with paramagnetic FeSn(OH)6 in the dark magnetic fraction and probably with lepidocrocite in the colourless non-magnetic fraction. When the magnetic fraction is heated in air to 600°C, however, the finely dispersed particles of hydrated ferrous stannate seem to coagulate and form a rhombohedral phase which closely resembles ilmenite. It is suggested that this phase is anhydrous ferrous stannate and that it forms a series of compounds with haematite which are analogous to Fe2−xTixO3. For x near 2/3, the latter series becomes appreciably ferrimagnetic and it is concluded that the magnetisation in these cassiterite samples is primarily due to the presence of a similar tin phase which may occur in small dehydrated regions of the primary ferrous stannate hydrate. These conclusions are further substantiated by thermogravimetric and infrared studies for both the Aberfoyle and Pelepah Kanan samples and by thermal demagnetisation analyses for the dark magnetic cassiterite. The thermal demagnetisation data indicate that it is possible to have in cassiterite a series of magnetic compounds with Curie points in the range of 50–250°C which corresponds closely to the magnetic region of the Fe2−xTixO3 series. — It is shown that many features associated with cassiterite paragenesis are readily explicable in terms of colloidal systems following condensation of the primary gaseous ore fluids. Based on this hypothesis and confirmatory experimental evidence, a mechanism for the origin of zoning in cassiterite is outlined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akimoto, S.: “Magnetic properties of ferrimagnetic oxide minerals as a basis of rock magnetism.” Adv. Phys. 6, 288 (1957).

    Google Scholar 

  • Baker, G.: “Cassiterite concentrate from Tableland tin dredging N.L., Northern Territory.” C.S.I.R.O. Mineragraphic Investigations Report No. 649, Melbourne 1956.

  • Baran, O. O., Yu. M. Glazman, and D. N. Strazhesko: “Absorption of opposite ions in the coagulation of lyophobic sols by electrolytes.” Kolloidn. Zh. 26 (3), 278–283 (1964).

    Google Scholar 

  • Barnes, H. L.: (a) “Chemistry of ore transport in epithermal and telethermal deposits.” Symposium problems of postmagmatic ore deposition. Vol. 1 (Prague) 369–373 (1965). (b) Discussion: Symposium problems of postmagmatic ore deposition. (Prague) Vol. 2, 454–457 (1965).

  • Barton, P. B., P. M. Dethke, and P. Toulmin: “Equilibrium in ore deposits.” Min. Soc. Am. Sp. Paper 1, 171–185 (1963).

  • Barth, T. W. F., and E. Posnjak: “The Crystal Structure of ilmenite.” Z. Kristall. 88, 265 (1934).

    Google Scholar 

  • Boyle, A.J.F., and H.E. Hall: “The Mössbauer Effect. Reports on Progress in Physics 25, 441 p. (1962).

  • Bozorth, R. M., D. E. Walsh, and A. J. Williams: “Magnetization of the ilmenite-haematite system at low temperatures.” Physics Review 108, 157 (1957).

    Google Scholar 

  • Bungenberg, D. E., and H. G. Jong,: “Reversal of charge phenomena, equivalent weight and specific properties of the ionised group.” Colloid Science Vol. 2 (Ed. H. R. Kruyt), 259–330 (1949).

    Google Scholar 

  • Burbank, W. S.: “Structural control of ore deposition in the Red Mountain, Sneffels, and Telluride districts of the San Juan Mountains, Colorado.” Colorado Sci. Soc. Proc. 14, 141–261 (1941).

    Google Scholar 

  • — “Problems of wall-rock alteration in shallow volcanic environments.” Colorado School of Mines Quarterly 45, 289–319 (1950).

    Google Scholar 

  • Chevallier, R., et J. Pierre: “Propriétés thermomagnetiques des roches volcaniques.” Ann. de Phys. 18, 383 (1932).

    Google Scholar 

  • Coffeen, W. W.: “Ceramic and Dielectric Properties of the Stannates,” J. Am. Ceram. Soc. 36, 207 (1954).

    Google Scholar 

  • Cordey-Hayes, M.: “An interpretation of the Mössbauer spectra of some inorganic tin compounds in terms of the oxidation state of the tin atom.” J. Inorg. Nucl. Chem. 26, 915 (1964).

    Google Scholar 

  • Ecklebe, F.: “Optische Untersuchungen am Zinnerz im Temperaturbereich von 16–1100°C.” Neues Jahrb. Min., Abt. A. B-Bd. 66, 47 (1932).

    Google Scholar 

  • Edwards, A. B.: “Present state of knowledge and theories of ore genesis.” Australasian Inst. Min. Metallurgy Proc. 177, 69–116 (1956).

    Google Scholar 

  • Falconer, J. D., and C. Raeburn: “The Northern Tinfields of Bauchi Province.” Geol. Survey Niveria Bull No. 4 (1923).

  • Fenner, C. N.: “Pneumatolytic processes in the formation of minerals and ores.” Ore deposits of the Western States, Rocky Mountain Fund Series. A.I.M.E. 58–106 (1933).

  • Flinter, B. M.: “Magnetic separation of some alluvial minerals in Malaya.” Amer. Min. 44, 738–751 (1959).

    Google Scholar 

  • — “The effects of heat, hydrochloric acid and lead chloride on some Malayan Mineral grains.” Overseas Geology and Mineral Resources 8, No. 1, 53–56 (1960).

    Google Scholar 

  • Flück, R., W. Kerler, and W. Neuwirth: “T Mössbauer effect and its significance in chemistry.” Angewandte Chemie 2, 277 (1963).

    Google Scholar 

  • Frauenfelder, H.: “The Mössbauer effect.” (W. A. Benjamin, Inc., New York) (1962)

    Google Scholar 

  • Ganeev, I. G.: “On the possible transport of substances in the form of complicated complex compounds.” Symposium problems of postmagmatic ore deposition. (Prague) Vol. 1, 141–144 (1965).

  • Gotman, J. D.: “On the properties of cassiterite in connection with conditions of its formation.” Bull. Soc. Naturalistes, Moscou, Sec. Geol. 16, No. 2 (1938).

    Google Scholar 

  • -- and M. G. Rub: “Comparative characteristics of the tin bearing granitoids of different ages of the south Primor'ye and certain other tin-bearing areas.” Sovietskaya Geologija No. 2, 48–56 (1960).

  • Grubb, P. L. G., and P. Hannaford: “Ferromagnetism and colour zoning in some Malayan cassiterite.” Nature 209, 677 (1966).

    Google Scholar 

  • -- and A. F. Wilson: “Some experimental studies in the system SnO2-FeO-Fe2O3.” (In preparation)

  • Hanus, V., and M. Krs: “Cassiterite as a carrier of palaeomagnetism.” Nature 5011, 675 (1965).

    Google Scholar 

  • Hemley, J. J.: Discussion: Symposium on the chemistry of ore-forming fluids. Econ. Geol. 60, 1392 (1965).

    Google Scholar 

  • — and R. Jones: “Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism.” Econ. Geol. V. 59, No. 4, 538–569 (1964).

    Google Scholar 

  • Holland, H. D.: Discussion: Symposium problems of postmagmatic ore depositions. (Prague) Vol. 2, 454–457 (1965).

  • Hutton, C. O.: “Studies of heavy detrital minerals.” Bull. Geol. Soc. Amer. 61, 635 (1950).

    Google Scholar 

  • Ingham, F. T., and E. F. Bradford: “The geology and mineral resources of the Kinta Valley, Perak.” Geol. Surv. Malaya. District Memori 9 (1960).

  • Itsikson, G. V.: “Source of alkaline metals in the course of development of tin-bearing deposits of sulphide cassiterite formation.” Symposium problems of postmagmatic ore deposition. (Prague) Appendix to Vol. 1, 149–153 (1965).

  • Itsikson, M. I.: “The distribution of tin-ore deposits within folded zones.” Internat. Geol. Review 2, No. 5, 397–417 (1960).

    Google Scholar 

  • Jones, R. E.: “Some simple theoretical considerations of the pneumatolytic phase in late magmatic processes.” Symposium problems of postmagmatic ore deposition. (Prague) Vol. 1, 475–482 (1965).

  • Jurinak, J. J.: “Interaction of water with iron and titanium oxide surfaces: goethite, haematite, and anatase.” Journ. Colloid Science 19, 477–487 (1964).

    Google Scholar 

  • Khaidak, I.: “Complex polymer compounds.” Uspechi Chim. ii 30, No. 9 (1961).

  • Korzhinskii, D. S.: “An outline of metasomatic processes.” Internat. Geol. Review 6, No. 10, 1713 to 1734 (1964).

    Google Scholar 

  • Krauskopf, K. B.: (a): “Relation of volatilities to ore metal associations” Symposium problems of post-magmatic ore deposition (Prague) Vol. 1, 434–437 (1965).

  • -- (b) “The use of thermochemical data in defining conditions of high temperature ore formation.” Symposium problems of postmagmatic ore deposition. (Prague) Vol. 2, 332–355 (1965).

  • Kume, S.: “Magnetic properties of ilmenite at low temperatures.” Proc. Japan. Acad. 31, 709 (1955).

    Google Scholar 

  • Lawrence, L. J.: “Tin mineralisation under changing hypogene conditions.” Symposium problems of postmagmatic ore deposition. (Prague) Vol. 1, 293–296 (1965).

  • Lazarenko, E. A., and A. V. Malygina: “Role of colloids in formation of the Upper Tertiary ores and metasomatic rocks in Transcarpathians.“ Vopr. Geol. i Mineralo. Rudn. Mestorozhd., Gos. Geol. Kom. S.S.S.R., Inst. Minerl'n Resursov. 161–175 (1964).

  • Leube, A., and E. F. Stumpfl: “The Rooiberg and Leeuwpoort tin mines, Transvaal, South Africa. Part 2. Petrology, mineralogy and geochemistry.” Econ. Geol. 58, 527–557 (1963).

    Google Scholar 

  • Liebenberg, W. R.: “Notes on the occurrence of a pleochronic variety of cassiterite in South Africa.” Trans. Geol. Soc. S. Africa XLVIII, 1–9 (1945).

    Google Scholar 

  • Little, W. M.: “Inclusions in cassiterite and associated minerals.” Econ. Geol. V. 55, No. 3, 485–509 (1960).

    Google Scholar 

  • Lopatina, I. L., and A. Smurov: “Experimental study of the mobility of lead sulphide, copper sulphide, and iron sulphide hydrosols in the hydrothermal environment.” Internat. Geol. Review 5, No. 3, 350 (1963).

    Google Scholar 

  • Lugov, S. F.: “Genetic types and economic value of tin and tungsten deposits in Chukota.” Internat. Geol. Review 7, No. 4, 621–629 (1965).

    Google Scholar 

  • Lynch, F. J., and J. B. Baumgardner: “Transducer for Mössbauer experiments.” Processings of the Second International Conference on the Mössbauer Effect, Saclay, France, 1961. Editors: D. M. J. Compton and A. H. Schoen (John Wiley & Sons, Inc., New York) 54 (1962).

    Google Scholar 

  • Lyons, R. J. P., and A. B. Edwards: “Mineralisation at Aberfoyle tin mine, Rossarden, Tasmania II. Mineral composition of the ore.“ C.S.I.R.O. Mineragraphic Investigations Report N. 656 (1956).

  • MacChesney, J. B., and A. Muan: „Studies in the System iron oxide titanium oyide.“ Amer. Min. 44, 926–945, (1959).

    Google Scholar 

  • Mackay, R. A., R. Greenwood, and J. E. Rockingham: “The geology of the Plateau Tinfields 3/4 Resurvey 1945–48.” Geol. Surv. Nigeria Bull. No. 19 (1949).

  • McDougall, I.: “Differentiation of the Tasmanian dolerites: Red Hill dolerite-granophyre association.” Bull. Geol. Soc. Amer. 73, 279–316 (1962).

    Google Scholar 

  • Materikov, M. P.: “Role of assimilation and tectonics of ore bearing solutions in formation of stanniferous deposits of various genetic types.” Mezhdunar, Geol. Kongr. XXII-ya, Sessija, Dokl. Solv. Geologov. Probl. 16, 44–56 (1964).

    Google Scholar 

  • Mel'nikov, G. A.: “Zoning of tin deposits.” Symposium problems of postmagmatic ore deposition (Prague). Vol. 2, 219–221 (1965).

  • Naboko, S. I.: “Conditions of the present-day hydrothermal metamorphism of volcanic rocks.” Internat. Geol. Review 5, No. 7, 850–858 (1962).

    Google Scholar 

  • Noll, W.: “Zur Kristallchemie des Zinnsteins (Kassiterit).” Heidelberger Beitr. Miner. Petr. 1, 593 to 625 (1949).

    Google Scholar 

  • Packham, R. F.: “Some studies of the coagulation of dispersed clays with hydrolysing salts.” J. Colloid Sci. 20, 81–92 (1965).

    Google Scholar 

  • Palivocova, M.: “Criteria of magnetite formation during selective metasomatism of plutonic rocks.” Symposium problems of post-magmatic ore deposition (Prague). Vol. 1, 578–582 (1965).

  • Pecora, W. T., G. Switzer, A. L. Barbosa, and A. Y. Myers: “Structure and mineralogy of the Colconda pegmatite, Minas Gerais, Brazil.” Amer. Min. 35, 889 (1950).

    Google Scholar 

  • Petersen, U.: Discussion: Symposium on the chemistry of ore-forming fluids. Econ. Geol. 60, 1399 (1965).

    Google Scholar 

  • Popolitov, E. I.: “Tin behaviourin pegmatite formation.” Geokhim. Redkikh. Elementov v. Izverzhennykh Gorn. Porodakh, Akad. Nauk, SSSR, Sibirsk. Otd., Inst. Geokhim. 124–130 (1964).

  • Pryor, E. J., and S. A. Wrobel: “Studies in cassiterite flotation.” Trans. Inst. Min. Metall. 60, Pt. 6, 201 to 237 (1950).

    Google Scholar 

  • Radkevich, E. A.: “Tin ore districts in countries outside the Soviet Union.” Trudy Instituta Ged. Nauk. Akademii Nauk, S.S.S.R., Vyp 82 Seriya Zudnoy Mineralogiy No. 8 (1947).

  • -- “On the chemism of solutions in the formation of tin deposits of various genetic types.” Symposium problems of postmagmatic ore deposition (Prague). Appendix to Vol. 2, 113 (1965).

  • Ramdohr, P.: “Radioaktive Höfe in Quarz, Yttrofluorit und Zinnstein und neue Feststellungen über das atomare Bremsvermögen des Elements.” Neues Jahrb. Min. Abt. A. B-Bd. 67, 63 (1933).

    Google Scholar 

  • — “Magnetische Cassiterite.” Comptes Rendus Soc. geol. Fin. 33, 473–480 (1961).

    Google Scholar 

  • Ringwood, A. E.: “A study of the role of a gas phase in segregation and concentration of trace elements in a magma.” Aust. Inst. Min. Metall. Proc. 180, 75–96 (1958).

    Google Scholar 

  • Roedder, E., B. Ingram, and W. E. Hall: “Studies of fluid inclusions III. Extraction and quantitative analysis of inclusions in the milligram range.” Econ. Geol. 58, 353–374 (1963).

    Google Scholar 

  • Roedder, E.: “Evidence from fluid inclusions as to the nature of the ore-forming fluids.” Symposium problems of postmagmatic ore deposition. (Prague) Vol. 2, 375–384 (1965).

  • Ruby, S. L., and G. Shirane: “Magnetic Anomaly in FeTiO3-α-Fe2O3 system by Mössbauer Effect.” Phys. Review 123, 1239 (1961).

    Google Scholar 

  • Sawkins, F. J., and J. S. Huebner: “Postmagmatic ore deposition in the light of fluid inclusion studies, Providencia Mine, Zacatecas, Mexico.” Symposium problems of postmagmatic ore deposition (Prague). Vol. 2, 424–428 (1965).

  • Scaife, D.: Personal Communication.

  • Scrivenor, J. B.: “On an occurrence of native copper with tin ore in the Federated Malay States.” Mineral. Mag. 15, 299–301 (1909).

    Google Scholar 

  • — „Notes on Cassiterite in the Malay Peninsula.“ Min. Mag. 17, 118–119 (1911).

    Google Scholar 

  • — “Pleochroism in a tin-bearing mineral from Siam.“ Geol. Mag. 6, 123–124 (1919).

    Google Scholar 

  • Serebryakov, V. A.: “Autometasomatic alteration of granitoids and association of tin mineralisation with the zone of sodium-potassium metasomatism.” Internat. Geol. Review 3, No. 2, 100–113 (1961).

    Google Scholar 

  • Shull, C. G., W. A. Strauser, and E. O. Wollan: “Neutron diffraction by paramagnetic and antiferromagnetic substances.” Phys. Review 66, 333 (1951).

    Google Scholar 

  • Smirnov, S. S.: “Kotsenke olovovudnykh rayonov.” Sovet. geol., series 3 (1941).

  • -- “O sovremennom sostoyanii teorii obrazovanii magmatogennykh rudnykh mestorozhdeniye.” Zap Yseros Min. Obshch., ch. 76, No. 1 (1947).

  • Smith, F. G.: “Transport and deposition of the non-sulphide vein materials. II. Cassiterite.” Econ. Geol. 42, 251 (1947).

    Google Scholar 

  • Sobel'man, Ye. I.: “Certain features of postmagmatic solutions and the problem of temperature and pressure in mineral-thermometry.” Soviet. Geol. No. 1, 93–103 (1962).

    Google Scholar 

  • Sorokin, V. L.: “Experimental study of the synthesis of iron and copper sulphides.” Internat. Geol. Review 6, No. 11, 1959–63 (1964).

    Google Scholar 

  • Strunz, V. H., und G. Contag: “Hexahydroxostannate Fe, Mn, Co, Mg, Ca (Sn(OH)6) und deren Kristallstruktur,” Acta Cryst. 13, 601 (1960).

    Google Scholar 

  • Stumpfl, E. F.: “Einige neue Ergebnisse zur Geochemie der Zinnlagerstätten.” Neues Jahrbuch für Mineralogie, Monatshefte 88–95 (1963).

    Google Scholar 

  • Takada, T., M. Kiyama, V. Bando, T. Nakamura, M. Shiga, T. Shinjo, N. Yamamoto, Y. Endoh, and H. Takaki: “Mössbauer Study of alpha-, beta-, and gamma-FeOOH.” J. Phys. Soc. Japan 19, 1744 (1964).

    Google Scholar 

  • Taylor, H. P.: Discussion: Symposium on the chemistry of ore-forming fluids. Econ. Geol. 60, 1396–1397 (1965).

    Google Scholar 

  • Taylor, J. H.: “The chemistry of deep connate waters and of ore fluids.” Symposium problems of post-magmatic ore deposition (Prague). Vol. 2, 429–431 (1965).

    Google Scholar 

  • Turneaure, F. S.: “A comparative study of major ore deposits of Central Bolivia. Part ii.” Econ. Geol. 55, 574–605 (1960).

    Google Scholar 

  • Vulchin, Ye. I.: “Contribution to research on quartzforming systems.” Internat. Geol. Review 1, No. 11, 1–27 (1959).

    Google Scholar 

  • Walker, A. L.: “Some factors affecting gas phase transport.” Econ. Geol. 60, 117–123 (1965).

    Google Scholar 

  • Walker, L. R., G. K. Wertheim, and V. Jaccarino: “Interpretation of the Fe57 Isomer Shift.” Phys. Review Letters 6, 236 (1961).

    Google Scholar 

  • -- “Inorganic colloid chemistry. Vol. II. The hydrous oxides and hydroxides.” New York (Wiley) 1935.

  • Wertheim, G. K.: “Mössbauer Effect. Principles and applications.” Academic Press Inc., New York, 1964.

    Google Scholar 

  • Yermakov, N. P.: “Importance of inclusions in minerals to the theory of ore genesis and study of mineral forming media.” Internat. Geol. Review 31, 3, No. 7, 575–585 (1961).

    Google Scholar 

  • Zakharov, Ye. Ye.: “Some laws governing the regional geologic occurrences of ferrous and non-ferrous metal ores.” Internat. Geol. Review 3, No. 8, 664 to 693 (1961).

    Google Scholar 

  • Zharikov, V. A.: “Experimental investigation of the acid-base filtration effect.” Symposium problems of postmagmatic ore deposition (Prague). Vol. 1, 466 to 471 (1965).

  • Znamenskii, E. B., E. E. Pololitov, and V. A. Legeido: “Tin geochemistry in granitic rocks.” Geokhim. Redkikh. Elementov v Izverzhennykh Gorn. Porodakh, Akad. Nauk SSSR, Sibirsk. Otd. Iist. Geokhim. 47–56 (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grubb, P.L.C., Hannaford, P. Magnetism in cassiterite. Mineral. Deposita 1, 148–171 (1966). https://doi.org/10.1007/BF00206184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206184

Keywords

Navigation