Skip to main content

Advertisement

Log in

Failure of specific adoptive immunotherapy owing to survival and outgrowth of variant cells

  • Original Articles
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Summary

Adoptive immunotherapy, the transfer of spleen cells from immunized mice to mice with a small tumor, was usually curative for mice with the P815 mastocytoma provided that steps were taken to prevent the generation of tumor-induced suppressor cells in the recipient animal. However, failure of adoptive immunotherapy of the P815 tumor, resulting in regrowth of either the primary intradermal or a metastatic tumor, was observed in 10 out of 112 animals receiving graded doses of 7.5×107 to 3.0×108 immune spleen cells. Examination of the ten tumors in mice that failed to respond to therapy revealed that seven of them were significantly less susceptible than the original P815 tumor to rejection in vivo by transferred anti-P815-specific effector cells. In addition, nine of the ten therapy-failure tumors were also less susceptible than the original P815 tumor to lysis in vitro by P815-specific, but not DBA/2-specific, cytotoxic T lymphocytes. Sensitivity to lysis by tumor-specific cytotoxic T cells was not, however, strongly correlated with sensitivity to rejection in vivo by P815-specific effector spleen cells. Neither in vivo sensitivity to rejection, nor sensitivity to cytotoxic T cells, was correlated with alterations in class I major histocompatibility complex antigen expression. These results suggest that the survival and outgrowth of variant tumor cells was frequently the cause of failure of specific adoptive immunotherapy of the P815 tumor, and that selection for cells with a reduced sensitivity to killing by cytotoxic T cells was only one mechanism that might lead to an immunotherapeutic failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogeneic tumor. J Exp Med 151:69

    Google Scholar 

  2. Bosslet K, Schirrmacher V (1981) Escape of metastasizing clonal tumor cell variants from tumor-specific cytolytic T lymphocytes. J Exp Med 154:557

    Google Scholar 

  3. Cheever MA, Greenberg PD, Fefer A (1980) Specificity of adoptive chemoimmunotherapy of established syngeneic tumors. J Immunol 125:711

    Google Scholar 

  4. Cheever MA, Greenberg PD, Fefer A (1981) Specific adoptive therapy of established leukemia with syngeneic lymphocytes sequentially immunized in vivo and in vitro and non-specifically expanded by culture with interleukin 2. J Immunol 126:1318

    Google Scholar 

  5. Cheever MA, Greenberg PD, Fefer A (1984) Potential for specific cancer therapy with immune T lymphocytes. J Biol Response Mod 3:113

    Google Scholar 

  6. Chou T, Chang AE, Shu S (1987) Generation of therapeutic T lymphocytes from tumor-bearing mice by in vitro sensitization. Culture requirements and characterization of immunologic specificity. J Immunol 140:1453

    Google Scholar 

  7. Daily MO, Fathman CG, Butcher EC, Pillemer E, Weissman I (1982) Abnormal migration of T lymphocyte clones. J Immunol 128:2134

    Google Scholar 

  8. Dye ES, North RJ (1981) T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med 154:1033

    Google Scholar 

  9. Dye ES, North RJ (1984) Specificity of the T cells that mediate and suppress adoptive immunotherapy of established tumors. J Leukocyte Biol 36:27

    Google Scholar 

  10. Dye ES, North RJ, Mills CD (1981) Mechanisms of anti-tumor action of Corynebacterium parvum. I. Potentiated tumor-specific immunity and its therapeutic limitations. J Exp Med 154:609

    Google Scholar 

  11. Fahey JR, Hines DL (1987) Progressive growth of immunogenic tumors: relationship between susceptibility of ascites P815 tumor cells to T-cell-mediated lysis and immune destructive in vivo. Cancer Res 47:4759

    Google Scholar 

  12. Fernandez-Cruz E, Halliburton B, Feldman JD (1979) In vivo elimination by specific effector cells of an established syngeneic rat Moloney virus-induced sarcoma. J Immunol 123:1772

    Google Scholar 

  13. Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63:1727

    Google Scholar 

  14. Greenberg PD, Kern DE, Cheever MA (1985) Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+, 2 T cells. Tumor eradication does not require participation of cytoxic T cells. J Exp Med 161:1122

    Google Scholar 

  15. Hines DL (1985) Differentiation of Abelson murine leukemia virus-infected promonocytic leukemia cells. Int J Cancer 36:233

    Google Scholar 

  16. Hines DL (1986) Comparison of tumor-associated transplantation antigens of sublines of methylcholanthrene-induced murine tumors passaged separately for over a decade. Cancer Res 46:4921

    Google Scholar 

  17. Kedar F, Weiss DW (1983) The in vitro generation of effector lymphocytes and their employment in tumor immunotherapy. Adv Cancer Res 38:171

    Google Scholar 

  18. Lukacher AE, Morrison LA, Bracile VL, Malissen B, Braciale TJ (1985) Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J Exp Med 162:171

    Google Scholar 

  19. Miller FR (1982) Intratumor immunologic heterogeneity. Cancer Methods Rev 1:319.20

    Google Scholar 

  20. Mills CD, North RJ (1983) Expression of passively transferred immunity against an established tumor depends on the generation of cytolytic T cells in recipient. Inhibition by suppressor cells. J Exp Med 157:1448

    Google Scholar 

  21. Mills CD, North RJ, Dye ES (1981) Mechanisms of anti-tumor altion of Corynebacterium parvum. II. Potentiated cytolytic T cell response and its tumor-induced suppression. J Exp Med 154:621

    Google Scholar 

  22. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends upon elimination of tumor-induced suppressor T cells. J Exp Med 155:1063

    Google Scholar 

  23. North RJ (1984) Gamma-irradiation facilitates the expression of adoptive immunity against an established tumor by eliminating suppressor T cells. Cancer Immunol Immunother 16:175

    Google Scholar 

  24. Shu S, Rosenberg SA (1895) Adoptive immunotherapy of newly-induced murine sarcomas. Cancer Res 45:1657

    Google Scholar 

  25. Skipper HE (1983) The forty-year-old mutation theory of Luria and Delbruck and its pertinence to cancer chemotherapy. Adv Cancer Res 40:331

    Google Scholar 

  26. Smith HG, Hormel RP, Hanna MG Jr, Zwilling BS, Zbar B, Rapp HJ (1977) Regression of established intradermal tumors and lymph node metastases in guinea pigs after systemic transfer of immune lymphoid cells. J Natl Cancer Inst 58:1315

    Google Scholar 

  27. Urban JL, Schreiber H (1983) Selection of macrophage-resistant progressor tumor variants by the normal host. Requirement for concomitant T cell immunity. J Exp Med 157:642

    Google Scholar 

  28. Urban JL, Burton RC, Holland JM, Kripke ML, Schreiber H (1982) Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells. J Exp Med 155:557

    Google Scholar 

  29. Uyttenhove C, Maryanski J, Boon T (1983) Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med 157:1040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from RJR Nabisco Inc., a grant from the J. M. Foundation, and by USPHS grant CA-40597 awarded by the National Cancer Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hines, D.L. Failure of specific adoptive immunotherapy owing to survival and outgrowth of variant cells. Cancer Immunol Immunother 28, 241–247 (1989). https://doi.org/10.1007/BF00205232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205232

Keywords

Navigation