Skip to main content
Log in

A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Several iron binding metabolites (siderophores) of Pseudomonas fluorescens B10 (JL-3133) have been detected using C18 reverse phase HPLC coupled with photodiode array detection methods. This analysis utilized a volatile mobile phase of 90% 20 mm NH4HCO3/10% MeOH, pH 6.5. It has been shown to be applicable to other P. fluorescens strains for the detection of related metabolites. Direct scale-up of the analytical HPLC conditions allowed for the efficient preparative isolation of pseudobactin, the principle siderophore produced by P. fluorescens B10 (JL-3133).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah MA. 1991 Pyoverdins and pseudobactins. In: Winkelmann G, ed. CRC Handbook of Microbial Iron Chelates. Boca Raton, FL: CRC Press; 139–153.

    Google Scholar 

  • Budzikiewicz H. 1988 Peptide Siderophores from Pseudomonas. Nat Prod Chem 3, 317–333.

    Google Scholar 

  • Buyer JS, Leong J. 1986 Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas Strains. J Biol Chem 261, 791–794.

    Google Scholar 

  • Buyer JS, Wright JM, Leong J. 1986 Structure of pseudobactin A214, a siderophore from a bean-deleterious Pseudomonas. Biochemistry 25, 5492–5499.

    Google Scholar 

  • Demange P, Wendenbaum S, Bateman A, Dell A, Abdallah MA. 1987 Bacterial siderophores: structure and physiochemical properties of pyoverdins and related compounds. In: Winkelmann G, van der Helm D, Neilands JB, eds. Iron Transport in Microbes, Plants, and Animals. London: VCH.

    Google Scholar 

  • Demange P, Bateman A, Dell A, Abdallah MA. 1988 Structure of Azotobactin D, a siderophore of Azotobacter vinelandii Strain D (CCM 289). Biochemistry 27, 2745–2752.

    Google Scholar 

  • Demange P, Wendenbaum S, Linget C, et al. 1990 Bacteriol siderophores: structure and NMR assignment of pyoverdins Pa, siderophore of Pseudomonas aeruginosa ATCC 15692. Biol Met 3, 155–170.

    Google Scholar 

  • King EO, Ward MK, Raney DE. 1954 Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN. 1980 Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886.

    Google Scholar 

  • Kloepper JW, Schroth MN. 1981a Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71, 642–644.

    Google Scholar 

  • Kloepper JW, Schroth MN. 1981b Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71, 1020–1024.

    Google Scholar 

  • Konetschny-Rapp S, Huschka HG, Winkelmann G, Jung G. 1988 High performance liquid chromatography of siderophore from fungi. Biol Met 1, 9–17.

    Google Scholar 

  • Konetschny-Rapp S, Jung G, Raymond K, Meiwes J, Zähner H. 1992 Solution thermodynamics of the ferric complexes of new desferrioxamine siderophores obtained by directed fermentation. J Am Chem Soc 114, 2224–2230.

    Google Scholar 

  • Loper J, Lindow SE. 1987 Lack of evidence for in situ fluorescens pigment production by P. syringae pv. syringae on bean leaf surfaces. Phytopathology 77, 1449–1454.

    Google Scholar 

  • Meyer JM, Abdallah MA. 1978 The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification, and physiochemical properties. J Gen Microbiol 107, 319–328.

    CAS  Google Scholar 

  • Mishaghi IJ, Olsen MW, Cotty PJ, Donndelinger CR. 1988 Fluorescent siderophore mediated iron deprivation —a contingent biological control mechanism. Soil Biol Biochem 20, 573–574.

    Google Scholar 

  • Persmark M, Frejd T, Mattiasson B. 1990 Purification, characterization, and structure of pseudobactin 589A, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 29, 7348–7356.

    Google Scholar 

  • Philson SB, Llinás M. 1982 Siderochromes from Pseudomonas fluorescens. J Biol Chem 257, 8081–8085.

    Google Scholar 

  • Stainer RY, Palleroni NJ, Doudoroff M. 1966 The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.

    CAS  PubMed  Google Scholar 

  • Teintze M, Hossain MB, Barnes CL, Leong J, van der Helm D. 1981 Stucture of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas. Biochemistry 20, 6446–6457.

    Google Scholar 

  • Teintze M, Leong J. 1981 Structure of ferric pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B10. Biochemistry 20, 6457–6462.

    Google Scholar 

  • Yang CC, Leong J. 1984 Structure of pseudobactin 7SR1, a siderophore from a plant-deleterious Pseudomonas. Biochemistry 23, 3534–3540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak-Thompson, B., Gould, S.J. A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. Biometals 7, 20–24 (1994). https://doi.org/10.1007/BF00205189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205189

Keywords

Navigation