Advertisement

Erkenntnis

, Volume 14, Issue 1, pp 33–56 | Cite as

Epistemologische betrachtungen zu [S4, S5]

  • Wolfgang Lenzen
Article

Zusammenfassung

Die zahlreichen modallogischen Systeme zwischen den Standardkalkülen S4 und S5 werden vom epistemologischen Standpunkt aus untersucht, indem ‘Notwendigkeit’ wahlweise als ‘Wissen’ bzw. als ‘Überzeugt-sein’ gedeutet wird. Dabei stellt sich heraus, daß — unter gewissen andernorts begründeten Voraussetzungen über epistemische Logik-S4.4 als Logik der wahren Überzeugungen aufgefaßt werden kann, während die Systeme S4.3.2 und S4.2 als Logiken für solche Leute erscheinen, die das Schema ‘Wissen = wahre Überzeugung’ nur eingeschränkt für ganz spezielle rein doxastische bzw. rein epistemische Sätze akzeptieren. S4.2 ist dabei allem Anschein nach die Logik des Wissens.

Abstract

The numerous modal systems between S4 and S5 are investigated from an epistemological point of view by interpreting ‘necessity’ either as ‘knowledge’ or as ‘(strong) belief’. It is shown that-granted some assumptions about epistemic logic for which the author has argued elsewhere-the system S4.4 may be interpreted as the logic of true belief, while S4.3.2 and S4.2 may be taken to represent epistemic logic systems for individuals who accept the scheme ‘knowledge = true belief’ only for certain special instances. There is strong evidence in favor of the assumption that S4.2 is the logic of knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    Bacon, J. ‘Belief as relative knowledge’, in The Logical Enterprise, hrg.v. A. R. Anderson, R. M. Marcus and R. M. Martin, Yale University Press, 1975, SS. 189–210.Google Scholar
  2. [2]
    Blau, U. Glauben und Wissen, Dissertation, München, 1969.Google Scholar
  3. [3]
    Byrd, M. E. ‘Knowledge and true belief in Hintikka's epistemic logic’, Journal of Philosophical Logic 2 (1973), SS. 181–192.Google Scholar
  4. [4]
    Dummett, M. A. and E. J.Lemmon ‘Modal Logics between S4 and S5’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3 (1959), SS. 250–264.Google Scholar
  5. [5]
    Georgacarakos, G. N. ‘Semantics for S4.04, S4.4 and S4.3.2’, Notre Dame Journal of Formal Logic 17 (1976), SS. 297–302.Google Scholar
  6. [6]
    Gettier, E. ‘Is justified true belief knowledge?’, Analysis 23 (1963), SS. 121–123.Google Scholar
  7. [7]
    Goldblatt, R. I. ‘A new extension of S4’, Notre Dame Journal of Formal Logic 14 (1973), SS. 567–574.Google Scholar
  8. [8]
    Goldblatt, R. I. ‘Concerning the proper axiom for S4.04 and some related systems’, Notre Dame Journal of Formal Logic 14 (1973), SS. 392–396.Google Scholar
  9. [9]
    Goldblatt, R. I. ‘A study of L modal systems’, Notre Dame Journal of Formal Logic 15 (1974), SS. 289–294.Google Scholar
  10. [10]
    Hazen, A. ‘Semantics for S4.2’, Notre Dame Journal of Formal Logic 13 (1972), SS. 527–528.Google Scholar
  11. [11]
    Hintikka, J. ‘The modes of modality’, Acta Philosophica Fennica 16 (1963), SS. 65–82; abgedr. in J. Hintikka Models for Modalities, Dordrecht-Holland: D. Reidel, 1969, SS. 71–86. Die Seitenangaben beziehen sich auf die letztere Fassung.Google Scholar
  12. [12]
    Hughes, G. E. and M. J.Cresswell An Introduction to Modal Logic, London: Methuen & Co., 1968.Google Scholar
  13. [13]
    Kutschera, F. Einführung in die intensionale Semantik, Berlin: de Gruyter, 1976.Google Scholar
  14. [14]
    Lenzen, W. ‘Probabilistic interpretations of epistemic concepts’, 5th International Congress of LMPS, London, Ontario, Canada, 1975, Contributed Papers, SS. IV 19–20.Google Scholar
  15. [15]
    Lenzen, W. ‘On some substitution instances of R1 and L1’, Notre Dame Journal of Formal Logic 19 (1978), SS. 159–164.Google Scholar
  16. [16]
    Lenzen, W. ‘Recent work in epistemic logic’, Acta Philosophica Fennica 30, Issue 1 (1978).Google Scholar
  17. [17]
    Lenzen, W. Glauben, Wissen und Wahrscheinlichkeit, erscheint voraussichtlich 1979, Wien: Springer Verlag.Google Scholar
  18. [18]
    Makinson, D. C. ‘There are infinitely many Diodorean modal functions’, Journal of Symbolic Logic 31 (1966), SS. 406–408.Google Scholar
  19. [19]
    Prior, A. N. Past, Present and Future, Oxford University Press, 1967.Google Scholar
  20. [20]
    Sobociński, B. ‘Family 56– K of the non-Lewis modal systems’, Notre Dame Journal of Formal Logic 5 (1964), SS. 313–318.Google Scholar
  21. [21]
    Sobociński, B. ‘Certain extensions of modal system S4’, Notre Dame Journal of Formal Logic 11 (1970), SS. 347–368.Google Scholar
  22. [22]
    Sobociński, B. ‘A new class of modal systems’, Notre Dame Journal of Formal Logic 12 (1971), SS. 381–384.Google Scholar
  23. [23]
    Zeman, J. J. ‘The propositional calculus MC and its modal analog’, Notre Dame Journal of Formal Logic 9 (1968), SS. 294–298.Google Scholar
  24. [24]
    Zeman, J. J. ‘Modal systems in which necessity is “factorable”’, Notre Dame Journal of Formal Logic 10 (1969), SS. 247–256.Google Scholar
  25. [25]
    Zeman, J. J. ‘A study of some systems in the neighborhood of S4.4’, Notre Dame Journal of Formal Logic 12 (1971), SS. 341–357.Google Scholar
  26. [26]
    Zeman, J. J. ‘S4.6 is S4.9’, Notre Dame Journal of Formal Logic 13 (1972), S.118.Google Scholar
  27. [27]
    Zeman, J. J. ‘Semantics for S4.3.2’, Notre Dame Journal of Formal Logic 13 (1972), SS. 454–460.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • Wolfgang Lenzen

There are no affiliations available

Personalised recommendations