Skip to main content
Log in

Ectomycorrhiza formation between Pseudotsuga menziesii seedling roots and monokaryotic and dikaryotic isolates of Laccaria bicolor

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Seedling roots of Pseudotsuga menziesii were colonized with three monokaryotic isolates and one dikaryotic isolate of Laccaria bicolor to assess the effect of fungal genotype on ectomycorrhiza formation. Ectomycorrhizas resulting from colonization by the dikaryotic isolate had a multilayered mantle and a cortical Hartig net. One monokaryotic isolate (ss7) formed ectomycorrhizas comparable in anatomy to those induced by the dikaryotic isolate. Two other monokaryotic isolates (ss5, ss1) failed to form mantles or Hartig nets. Roots colonized by these isolates developed characteristics indicating an incompatible reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogar GD, Smith FH (1965) Anatomy of seedling roots of Pseudotsuga menziesii. Am J Bot 52:720–729

    Google Scholar 

  • Coleman MD, Bledsoe CS, Smit BA (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275–284

    CAS  Google Scholar 

  • Cordell CE, Marx SB, Maul SB, Owen JH (1987) Production and utilization of ectomycorrhizal fungal inoculum in the eastern United States. In: Sylvia DM, Hung LL, Graham JH (eds) North American Conference on Mycorrhizae. IFAS, Gainesville, Fla, pp 287–289

    Google Scholar 

  • Debaud JC, Gay G, Prevost A, Lei J, Dexheimer J (1988) Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol 108:323–328

    Google Scholar 

  • Dixon RK, Garrett HE, Stelzer HE (1987) Growth and ectomycorrhizal development of loblolly pine progenies inoculated with three isolates of Pisolithus tinctorius. Siv Genet 36:240–245

    Google Scholar 

  • Ducamp M, Poitou N, Olivier JM (1986) Comparison cytologique et biochimique entre culture monospores et boutures du carpophores chez Suillus granulatus (fr. ex L.) Kuntze. In: Gianinazzi-Pearson V. Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 575–579

    Google Scholar 

  • Fortin JA, Piché Y, Lalonde M (1980) Technique for the observation of early morphological changes during ectomycorrhiza formation. Can J Bot 58:361–365

    Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial DNA. Can J Bot 69:180–190

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Kottke I, Oberwinkler F (1986) Mycorrhiza of forest trees — structure and function. Trees 1:1–24

    Google Scholar 

  • Kropp BR, Fortin JA (1988) The incompatibility system and relative ectomycorrhizal performance of monokaryons and reconstituted dikaryons of Laccaria bicolor. Can J Bot 66:289–294

    Google Scholar 

  • Kropp BR, McAfee BJ, Fortin JA (1987) Variable loss of ectomycorrhizal ability in monokaryotic and dikaryotic cultures of Laccaria bicolor. Can J Bot 65:500–504

    Google Scholar 

  • Lamhamedi MS, Fortin JA, Kope HH, Kropp BR (1990) Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol 115:689–697

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1984) Ectomycorrhiza formation in Eucalyptus. II. The ultrastructure of compatible mycorrhizal fungi and associated roots. New Phytol 96:43–53

    Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Marx DH, Bryan WC (1971) Pure culture synthesis of ectomycorrhizae by Thelephora terrestris and Pisolithus tinctorius on different conifer hosts. Can J Bot 22:338–341

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Nylund JE (1980) Symplastic continuity during Hartig net formation in Norway spruce ectomycorrhizae. New Phytol 86:373–378

    Google Scholar 

  • Peterson RL, Farquhar ML (1994) Mycorrhizas — integrated development between roots and fungi. Mycologia 86:311–326

    Google Scholar 

  • Richter DL, Bruhn JN (1989) Revival of saprophytic and mycorrhizal Basidiomycete cultures from cold storage in sterile water. Can J Microbiol 35:1055–1060

    Google Scholar 

  • Sampagni R, Perrin R, LeTacon F (1986) Disease suppression and growth promotion of Norway spruce and Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata in forest nurseries. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Proceedings of the First European Symposium on Mycorrhizae. INRA, Paris, pp 799–806

    Google Scholar 

  • Sinclair WA, Cowles DP, Hee SM (1975) Fusarium root rot of Douglas fir seedlings: suppression by soil fumigation fertility management and inoculation with spores of the fungal symbiont Laccaria laccata. For Sci 21:390–399

    Google Scholar 

  • Sinclair WA, Sylvia DM, Larson AO (1982) Disease suppression and growth promotion in Douglas fir seedlings by the ectomycorrhizal fungus Laccaria laccata. For Sci 28:191–201

    Google Scholar 

  • Sylvia DM, Sinclair WA (1983) Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglas fir seedlings by the ectomycorrhizal fungus Laccaria laccata. Phytopathology 73:390–397

    Google Scholar 

  • Tonkin CM, Malajczuk N, McComb JA (1989) Ectomycorrhizal formation by micropropagated clones of Eucalyptus marginata inoculated with isolates of Pisolithus tinctorius. New Phytol 111:209–214

    Google Scholar 

  • Trappe J, Strand RF (1969) Mycorrhizal deficiency in a Douglas-fir region nursery. For Sci 15:381–389

    Google Scholar 

  • Villeneuve N, LeTacon F, Bouchard D (1991) Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglas-fir seedlings. Plant Soil 135:95–107

    Google Scholar 

  • Wong KKY, Fortin JA (1990) Root colonization and intraspecific mycobiont variation in ectomycorrhiza. Symbiosis 8:197–231

    Google Scholar 

  • Wong KKY, Piché Y, Montpetit D, Kropp BR (1989) Differences in the colonization of Pinus banksiana roots by sib-monokaryotic and dikaryotic strains of ectomycorrhizal Laccaria bicolor. Can J Bot 67:1717–1726

    Google Scholar 

  • Wong KKY, Montpetit D, Piché D, Lei J (1990a) Root colonization by four closely related genotypes of the ectomycorrhizal Basidiomycete Laccaria bicolor (Maire) Orton — comparative studies using electron microscopy. New Phytol 116:669–679

    Google Scholar 

  • Wong KKY, Piché Y, Fortin JA (1990b) Differentiated development of root colonization among four closely related genotypes of ectomycorrhizal Laccaria bicolor. Mycol Res 94:876–884

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumley, T.C., Farquhar, M.L. & Peterson, R.L. Ectomycorrhiza formation between Pseudotsuga menziesii seedling roots and monokaryotic and dikaryotic isolates of Laccaria bicolor . Mycorrhiza 5, 237–244 (1995). https://doi.org/10.1007/BF00204956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204956

Key words

Navigation