Skip to main content
Log in

Three temporal frequency channels constitute the dynamics of the optokinetic system of the crab, Carcinus maenas (L.)

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The yaw movements of both distal eyestalks of the shore crab Carcinus maenas in response to a sinusoidally oscillated striped pattern were recorded simultaneously. The control of eye movements under various experimental conditions is interpreted on the basis of a linear model of the optokinetic system (Fig. 1). The dynamics of the open-loop response, combined with the results of other authors, lead to a description of the motion-detecting mechanism of the crab (Fig. 9a, c): The crab processes movement in three velocity tuned channels in parallel. Each channel can be described by a correlation-model with adequate time constants. The channel tuned to rapid movements habituates very fast. The long time constants of the channel tuned to very slow movements constitute the “optokinetic memory”. The dynamical properties of eye coupling can be described by a parallel shunted lowpass-filter of the order 0.5 (Fig. 9b, Table 1b). With decreasing illumination the motion-detecting mechanism remains unchanged. The overall gain, however, decreases and the delays increase (Table 1a). Nonlinear properties of the system become apparent when it is stimulated with large amplitudes. The dynamics and the design of the optokinetic system of the crab are discussed as a compromise between the needs of optimal information exploitation and prevention of instabilities. The results are compared with known electrophysiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes WJP, Horridge GA (1969) Interaction of the movement of the two eyecups in the crab Carcinus. J Exp Biol 50:651–671

    Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybern 56:209–215

    Google Scholar 

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (eds) Photoreception and vision in invertebrates. Plenum Press, New York, pp 561–621

    Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56:69–87

    Google Scholar 

  • Erber J, Sandeman DC (1976) The detection of real and apparent motion by the crab Leptograpsus variegatus. II. Electrophysiology. J Comp Physiol 112:189–197

    Google Scholar 

  • Fleischer AG (1974) Bewegungssehen bei Carcinus maenas. Diplama thesis, University Tübingen

  • Fleischer AG (1980) Analysis of the biphasic optokinetic response in the crab Carcinus maenas. Biol Cybern 37:145–158

    Google Scholar 

  • Fleischer AG, Pflugradt M (1977) Continuous registration of X, Y-coordinates and angular position in behavioural experiments. Experientia 33:693–695

    Google Scholar 

  • Götz KG (1965) Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2:215–221

    Google Scholar 

  • Hirsh R (1977) Crustacean optomotor memory. In: Hoyle G (eds) Identified neurons and behavior of arthropods. Plenum Press, New York London, pp 405–421

    Google Scholar 

  • Horridge GA (1966a) Optokinetic memory in the crab Carcinus. J Exp Biol 44:233–245

    Google Scholar 

  • Horridge GA (1966b) Adaptation and other phenomena in the optokinetic response of the crab Carcinus. J Exp Biol 44:285–295

    Google Scholar 

  • Horridge GA, Burrows M (1968) Tonic and phasic systems in parallel in the eyecup responses of the crab Carcinus. J Exp Biol 49:269–284

    Google Scholar 

  • Horridge GA, Sandeman DC (1964) Nervous control of optokinetic responses in the crab Carcinus. Proc R Soc Lond B 161:216–246

    Google Scholar 

  • Kunze P (1964) Eyestalk reactions of the ghost crab Ocypode. In: Reiss RF (eds) Neural theory and modelling. Stanford University Press, Stanford, pp 293–304

    Google Scholar 

  • Mach E (1875) Grundlinien der Lehre von den Bewegungsemp-findungen. Engelmann, Leibzig

    Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc Lond B 225:251–275

    Google Scholar 

  • Miles FA, Kawano K (1987) Visual stabilization of the eyes. TINS 10:153–158

    Google Scholar 

  • Nalbach H-O (1982) Reaktionen der Krabbe Carcinus maenas auf monokulare und binokulare optokinetische Reize. Diploma thesis, University Tübingen

  • Nalbach H-O, Nalbach G (1987) Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. J Comp Physiol 160:127–135

    Google Scholar 

  • Nalbach H-O, Thier P, Varjú D (1985) Light-dependent eye-coupling during the optokinetic response of the crab, Carcinus maenas (L.). J Exp Biol 119:103–114

    Google Scholar 

  • Neil DM (1982) Compensatory eye movements. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea. 4. Neural integration and behavior. Academic Press, New York, pp 133–163

    Google Scholar 

  • Neil DM, Schöne H, Scapini F, Miyan JA (1983) Optokinetic responses, visual adaptation and multisensory control of eye movements in the spiny lobster, Palinurus vulgaris. J Exp Biol 107:349–366

    Google Scholar 

  • Pick B, Buchner E (1979) Visual movement detection under light-and dark-adaptation in the fly, Musca domestica. J Comp Physiol 134:45–54

    Google Scholar 

  • Ruytervan Steveninck RR de, Zaagman WH, Mastebrock HAK (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala. Biol Cybern 53:451–463

    Google Scholar 

  • Sandeman DC (1978) Eye-scanning during walking in the crab Leptograpsus variegatus. J Comp Physiol 124:349–357

    Google Scholar 

  • Sandeman DC, Erber J (1976) The detection of real and apparent motion by the crab Leptograpsus variegatus. I. Behaviour. J Comp Physiol 112:181–188

    Google Scholar 

  • Sandeman DC, Erber J, Kien (1975a) Optokinetic eye movements in the crab Carcinus maenas. I. Eye torque. J Comp Physiol 101:243–258

    Google Scholar 

  • Sandeman DC, Kien J, Erber J (1975b) Optokinetic eye movements in the crab Carcinus maenas. II. Responses of optokinetic interneurons. J Comp Physiol 101:259–274

    Google Scholar 

  • Thier P (1979) Bilaterale Wechselwirkungen in der optokinetischen Bahn der Krabbe Carcinus maenas. Diploma thesis, University Tübingen

  • Thorson J (1964) Dynamics of motion perception in the desert locust. Science 145:69–71

    Google Scholar 

  • Thorson J (1966) Small-signal analysis of a visual reflex in the locust. I. Input parameters. Kybernetik 3:41–53

    Google Scholar 

  • Varjú D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster. Z Naturforsch 14c:724–735

    Google Scholar 

  • Varjú D (1977) Systemtheorie für Biologen und Mediziner. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Varjú D, Sandeman DC (1982) Eye movements of the crab Leptograpsus variegatus elicited by imposed leg movements. J Exp Biol 98:151–173

    Google Scholar 

  • Waterman TH, Wiersma CAG, Bush BMH (1964) Afferent visual esponses in the optic nerve of the crab Podophthalmus. J Cell Comp Physiol 63:135–155

    CAS  Google Scholar 

  • Wiersma CAG (1970) Neuronal components of the optic nerve of the crab, Carcinus maenas. Proc K Ned Akad Wet, Ser C 73:25–34

    Google Scholar 

  • Wiersma CAG, Fiore L (1971a) Factors regulating the discharge frequency in optomotor fibres of Carcinus maenas. J Exp Biol 54:497–505

    Google Scholar 

  • Wiersma CAG, Fiore L (1971b) Unidirectional rotation neurones in the optomotor system of the crab, Carcinus. J Exp Biol 54:507–513

    Google Scholar 

  • Wiersma CAG, Hirsh R (1974) Memory evoked optomotor responses in crustaceans. J Neurobiol 5:213–230

    Google Scholar 

  • Wiersma CAG, Bush BMH, Waterman TH (1964) Efferent visual responses of contralateral origin in the optic nerve of the crab Podophthalmus. J Cell Comp Physiol 64:309–326

    CAS  Google Scholar 

  • Wiersma CAG, Hou LHR, Martini EM (1977) Visually reacting neuronal units in the optic nerve of the crab Pachygrapsus crassipes. Proc K Ned Akad Wet, Ser C 80:135–143

    Google Scholar 

  • York B, Wiersma CAG, Yanagisawa K (1972) Properties of the Optokinetic motor fibres in the rock lobster: build-up, flipback, afterdischarge and memory, shown by their firing pattern. J Exp Biol 57:217–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalbach, H.O. Three temporal frequency channels constitute the dynamics of the optokinetic system of the crab, Carcinus maenas (L.). Biol. Cybern. 61, 59–70 (1989). https://doi.org/10.1007/BF00204760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204760

Keywords

Navigation