Skip to main content
Log in

A Markovian formalization of heart rate dynamics evinces a quantum-like hypothesis

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Most investigations into heart rate dynamics have emphasized continuous functions, whereas the heart beat itself is a discrete event. We present experimental evidence that by considering this quality, the dynamics may be appreciated as a result of singular dynamics arising out of non-Lipschitz formalisms. Markov process analysis demonstrates that heart beats may then be considered in terms of quantum-like constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold VI (1989) Mathematical models of classical mechanics, 2nd edn. Springer, Berlin Heidelberg New York, pp 4–8

    Google Scholar 

  • Cohen IB (1971) Introduction to Newton's ‘Principia’. Cambridge University Press, Cambridge

    Google Scholar 

  • Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill, New York, pp 8–11

    Google Scholar 

  • Delcour AH, Lipscombe D, Tsien RW (1993) Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J Neurosci 13:181–184

    CAS  PubMed  Google Scholar 

  • Earman J (1986) A primer on determinism. Reidel, Dordrecht

    Google Scholar 

  • Eckmann J-P, Ruelle D (1992) Fundamental limitations for estimating dimensions and Liapunov exponents in dynamical systems. Physica D 56:185–187

    Article  Google Scholar 

  • Einstein A (1983) Geometry and experience. In: Sidelights on relativity. Dover, New York, pp 27–56

    Google Scholar 

  • Everitt B (1980) Cluster analysis. Halsted Press, New York

    Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol 1. Wiley, New York

    Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68

    Google Scholar 

  • Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350:324–327

    Article  Google Scholar 

  • Grassberger P, Schreiber T, Schaffrath C (1991) Nonlinear time sequence analysis. Int J Bifurcation Chaos 1:521–547

    Google Scholar 

  • Haken H (1991) Synergetics:Can it help physiology? In: Haken H, Koepchen H-P (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 21–31

    Google Scholar 

  • Hübler A (1992) Modeling and control of complex systems: papradigms and applications. In: Lam L, Naroditsky V (eds) Modeling complex phenomena. Springer, Berlin Heidelberg New York, pp 5–65

    Google Scholar 

  • Kitney RI, Rompelman O (eds) (1987) The beat to beat investigation of cardiovascular function. Clarendon Press, Oxford

    Google Scholar 

  • Lenzen VF (1954) Causality in natural science. Thomas, Springfield, Ill

    Google Scholar 

  • Ruelle D (1994) Where can one hope to profitably apply the ideas of chaos? Physics Today 47 [July]:24–30

    Google Scholar 

  • Sapoznikov D, Luria MH, Gotsman MS (1994) Differentiation of periodic from nonperiodic low-frequency heart rate fluctuations. Comp Biomed Res 27:199–209

    Article  CAS  Google Scholar 

  • Shaw CT, King GP (1992) Using cluster analysis to classify time series. Physica D 58:288–298

    Article  Google Scholar 

  • Somjen GG (1992) The missing error signal: regulation beyond negative feedback. News Physiol Sci 7:184–185

    Google Scholar 

  • Stelzel W, Kautzky T, Hübler A, Lüscher E (1988) Über die Eindeutigkeit der Lösungen der Eulerschen Gleichungen in der klassischen Mechanik. Helv Phys Acta 61:224–227

    Google Scholar 

  • Vautard R, You P, Ghil M (1992) Singular spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  • Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973

    PubMed  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36

    Article  CAS  PubMed  Google Scholar 

  • Wilders R (1993) From single channel kinetics to regular beating. Dissertation, University of Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  • Wilders R, Jongsma HJ (1993) Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys J 65:2601–2613

    CAS  PubMed  Google Scholar 

  • Winfree AT (1990) The geometry of biological time. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yates FE (1993) Self-organizing systems: In: Boyd CAR, Noble D (eds) The logic of life. Oxford University Press, Oxford, pp 189–218

    Google Scholar 

  • Zak M (1970) Uniqueness and stability of the solution of the small perturbation problem of a flexible filament with a free end. PMM (Moscow) 39:1048–1052

    Google Scholar 

  • Zak M (1983) Cumulative effect at the soil surface due to shear wave propagation. J Appl Mech 50:227–228

    Google Scholar 

  • Zak M (1993) Introduction to terminal dynamics. Complex Syst 7:59–87

    Google Scholar 

  • Zak M (1994) Physical models of cognition. Int J Theor Phys 33:113–1161

    Google Scholar 

  • Zbilut JP (1991) Power laws, transients, attractors and entropy: possible implications for cardiovascular dynamics. In: Haken H, Koepchen H-P (eds) Rhythms in physiological systems. Springer, Berlin Heidelberg New York, pp 139–152

    Google Scholar 

  • Zbilut JP, Murdock D, Lawson L, Lawless C, Von Dreele M, Porges S (1988) Use of power spectral analysis of respiratory sinus arrhythmia to detect graft rejection. J Heart Transplant 7:280–287

    CAS  PubMed  Google Scholar 

  • Zbilut JP, Zak M, Webber CL Jr (1994) Nondeterministic chaos approach to neural intelligence. In: Dagli CH, Fernandez B, Ghosh J, Kumara SRT (eds) Intelligent engineering systems through artificial neural networks, vol 4. ASME Press, New York, pp 819–824

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, A., Giudice, P.L., Mancini, A.M. et al. A Markovian formalization of heart rate dynamics evinces a quantum-like hypothesis. Biol. Cybern. 74, 181–187 (1996). https://doi.org/10.1007/BF00204206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204206

Keywords

Navigation