Skip to main content
Log in

Solute-atom segregation/structure relations at high-angle (002) twist boundaries in dilute Ni−Pt alloys

  • Published:
Interface Science

Abstract

Monte Carlo simulations, utilizing embedded atom method (EAM) potentials, are employed to investigate in detail solute-atom segregation behavior at high-angle symmetrical (002) twist boundaries, at T=850 K, in Pt-3 at.% Ni and Ni-3 at.% Pt alloys. Solute enhancement in those alloys occurs on both sides of the phase diagram, although it is considerably higher on the Ni-rich side. The distributions of solute concentrations within the first and the second planes are very inhomogeneous, with the sites highly enhanced in solute being in the minority. The remaining sites exhibit little or no enhancement. The highest level of solute concentrations at individual sites continues to increase with the value of the rotations angle, θ, until saturation occurs at about the Σ=5 misorientation. The large differences in concentrations between different types of sites suggest the possibility of an ordered grain-boundary phase. The correlation between the structure and solute species concentrations in most cases follows the trends observed for low-angle boundaries: Pt as a solute prefers the structural units of the perfect crystal type, while Ni as a solute tends to segregate at the filler units associated with the cores of the primary grain boundary dislocations. A strong correlation is observed between the position of a site in the first or second (002) plane and the plane of the interface. Rigid-body translations are detected for two boundaries on the Pt-rich side of the phase diagram. Roughening and possible structural multiplicity occur in the Σ=5 boundary on the Ni-rich side. The same boundary on the Pt-rich side of the phase diagram exhibits a considerable amount of structural and chemical disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P.Seah and E.D.Hondros, Proc. Roy. Soc. A. 355, 191 (1975).

    Google Scholar 

  2. E.D.Hondros and M.P.Seah, in Physical Metallurgy, edited by R.W.Cahn and P.Haasen (North Holland, Amsterdam, 1983), p. 856.

    Google Scholar 

  3. C.L.Briant, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D.Wolf and S.Yip (Chapman & Hall, London, 1992), p. 463.

    Google Scholar 

  4. S.M.Foiles and D.N.Seidman, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D.Wolf and S.Yip (Chapman & Hall, London, 1992), p. 497.

    Google Scholar 

  5. R.Kirchheim, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D.Wolf and S.Yip (Chapman & Hall, London, 1992), p. 481.

    Google Scholar 

  6. J.W.Cahn, J. Phys. (Paris) 43, C6–192 (1982).

    Google Scholar 

  7. A.Seki, D.N.Seidman, Y.Oh, and S.M.Foiles, Acta Metall. Mater. 39, 3167, 3179 (1991).

    Google Scholar 

  8. D.Udler and D.N.Seidman, Phys. Status. Solidi (b) 172, 267 (1992).

    Google Scholar 

  9. D.Udler and D.N.Seidman, Mater. Res. Soc. Symp. Proc. 278, 223 (1992).

    Google Scholar 

  10. D.Udler and D.N.Seidman, Materials Science Forum 126–128, 165 (1993).

    Google Scholar 

  11. D.Udler and D.N.Seidman, Materials Science Forum 126–128, 169 (1993).

    Google Scholar 

  12. D.Udler and D.N.Seidman, Acta Metall. Mater. 42, 1959 (1994).

    Google Scholar 

  13. R.W.Balluffi, in Interfacial Segregation, edited by W.C.Johnson and J.M.Blakely (ASM, Metals Park, Ohio, 1979), p. 193.

    Google Scholar 

  14. D.McLean, Grain Boundaries in Metals (Clarendon Press, Oxford, 1957).

    Google Scholar 

  15. E.D.Hondros and M.P.Seah, Metall. Trans. 8A, 1363 (1977).

    Google Scholar 

  16. M.Guttmann, Metall. Trans. 8A, 1383 (1977).

    Google Scholar 

  17. C.L.White and W.A.Coghlan, Metall. Trans. 8A, 1403 (1977).

    Google Scholar 

  18. T.Mütschelle and R.Kirchheim, Scripta Metall. 21, 21135 (1987).

    Google Scholar 

  19. K.Lücke and K.Detert, Acta Metall. 5, 628 (1957).

    Google Scholar 

  20. J.W.Cahn, Acta Metall. 10, 789 (1962).

    Google Scholar 

  21. K.Lücke and H.P.Stüwe, Acta Metall. 19, 1087 (1971).

    Google Scholar 

  22. D.A.Molodov, V.Ye.Fradkov, L.S.Shvindlerman, and G.I.Kaplan, Sov. Phys. Solid State 26, 284 (1984).

    Google Scholar 

  23. R.G.Hoagland, M.I.Baskes, M.S.Daw, and S.M.Foiles, J. Mater. Res. 5, 313 (1990).

    Google Scholar 

  24. M.I.Baskes, R.G.Hoagland, and A.Needleman, Mater. Sci. Eng. A 159, 1 (1993).

    Google Scholar 

  25. W.T.Read, Dislocations in Crystals (McGraw Hill, New York, 1953).

    Google Scholar 

  26. J.C.M.Li, in Electron Microscopy and Strength of Crystals, edited by G.Thomas and J.Washburn (John Wiley, New York, 1963), p. 713.

    Google Scholar 

  27. D.N.Seidman, in Materials Interfaces: Atomic-Level Structure and Properties, edited by D.Wolf and S.Yip (Chapman & Hall, London, 1992), p. 58.

    Google Scholar 

  28. T.Schober and R.W.Balluffi, Philos. Mag. 21, 109 (1970).

    Google Scholar 

  29. D.Schwartz, V.Vitek, and A.P.Sutton, Philos. Mag. A 51, 499 (1985).

    Google Scholar 

  30. D.Schwartz, V.Vitek, and P.D.Bristowe, Acta Metall. 36, 675 (1988).

    Google Scholar 

  31. P.D.Bristowe and A.G.Crocker, Philos. Mag. A 38, 487(1978).

    Google Scholar 

  32. M.S.Taylor, I.Majid, P.D.Bristowe, and R.W.Balluffi, Phys. Rev. B 40, 2772 (1989); I. Majid, P.D. Bristowe, and R.W. Balluffi, Phys. Rev. B 40, 2779 (1989).

    Google Scholar 

  33. D.Wolf, Acta Metall. 32, 245, 735 (1984); Physica 131B, 53 (1985); in Materials Interfaces: Atomic-Level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992), p. 1.

    Google Scholar 

  34. Y.Oh and V.Vitek, Acta Metall. 34, 1941 (1986).

    Google Scholar 

  35. I.Majid and P.D.Bristowe, Scripta Metall. 21, 1153 (1987).

    Google Scholar 

  36. J.F.Lutsko, D.Wolf, S.Yip, S.R.Phillpot, and T.Nguyen, Phys. Rev. B 38, 11572 (1988).

    Google Scholar 

  37. S.M.Foiles, Acta Metall. 37, 2815 (1989).

    Google Scholar 

  38. G.A.Evangelakis and V.Pontikis, Europhysics Lett. 8, 599 (1989).

    Google Scholar 

  39. R.Najafabadi, D.J.Srolovitz, and R.LeSar, J. Mater. Res. 5, 2663 (1990).

    Google Scholar 

  40. R.Najafabadi, D.J.Srolovitz, and R.LeSar, J. Mater. Res. 6, 999 (1991).

    Google Scholar 

  41. R.Najafabadi, D.J.Srolovitz, H.Y.Wang, and R.LeSar, Acta Metall. Mater. 39, 3071 (1991).

    Google Scholar 

  42. H.Y.Wang, R.Najafabadi, and D.J.Srolovitz, Philos. Mag. A 65, 625 (1992).

    Google Scholar 

  43. H.Y.Wang, R.Najafabadi, D.J.Srolovitz, and R.LeSar, Acta Metall. Mater. 41, 2553 (1993).

    Google Scholar 

  44. H.Y.Wang, R.Najafabadi, D.J.Srolovitz, and R.LeSar, Interface Science 1, 31 (1993).

    Google Scholar 

  45. C.Rottman, J. Phys. (Paris) 43, C5–313 (1988).

    Google Scholar 

  46. J.Rittner, D.Udler, and D.N.Seidman, Phys. Rev. Lett. 74, 1115 (1995).

    Google Scholar 

  47. S.M.Foiles, in Surface Segregation and Related Phenomena, edited by P.A.Dowben and A.Miller (CRC Press, Boca Raton, Florida, 1990), p. 79.

    Google Scholar 

  48. S.M.Foiles, Phys. Rev. B. 40, 11502 (1989).

    Google Scholar 

  49. N.Metropolis, M.N.Rosenbluth, A.W.Rosenbluth, A.H.Teller, and E.Teller, J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  50. M.S.Daw and M.I.Baskes, Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  51. S.M.Foiles, Phys. Rev. B 32, 7685 (1985).

    Google Scholar 

  52. S.M.Foiles, M.I.Baskes, and M.S.Daw, Phys. Rev. B 33, 7983 (1986); Phys. Rev. B 37, 10378 (1988).

    Google Scholar 

  53. M.S.Daw, Phys. Rev. B 39, 7441 (1989).

    Google Scholar 

  54. M.S.Daw, S.M.Foiles, and M.I.Baskes, Mater. Sci. Repts. 9, 251 (1993).

    Google Scholar 

  55. R.C.Pond and V.Vitek, Proc. Roy. Soc. Lond. B357, 453 (1977).

    Google Scholar 

  56. A.M.Papon, M.Petit, G.Silvestre and J.J.Bachmann, Mat. Res. Soc. Symp. Proc. 5, 27 (1982).

    Google Scholar 

  57. K.L.Merkle and D.J.Smith, Phys. Rev. Lett. 59, 2887 (1987).

    Google Scholar 

  58. J.P.Hirth and B.Carnahan, Acta Metall. 40, 1237 (1992).

    Google Scholar 

  59. M.R.Fitzsimmons and S.L.Sass, Acta Metall. 36, 3103 (1988); Acta Metall. 37, 1009 (1989).

    Google Scholar 

  60. P.Wynblatt and R.C.Kuo, in Interfacial Segregation, edited by W.C.Johnson and J.M.Blakely (ASM, Metals Park, Ohio, 1979), p. 115.

    Google Scholar 

  61. S.Hofmann and P.Lejcek, Scripta Metall. 25, 2259 (1989).

    Google Scholar 

  62. J.J.Burton and E.S.Machlin, Phys. Rev. Lett. 37, 1433 (1981).

    Google Scholar 

  63. J.D.Eshelby, in Solid State Physics (Academic, New York, 1956), v. 3, p. 79.

    Google Scholar 

  64. D.Udler and D.N.Seidman, Scripta Metall. Mater. 26, 449, 803 (1992).

    Google Scholar 

  65. H.Stehle and A.Seeger, Z. Phys. 146, 217 (1956); A. Seeger and P. Haasen, Philos. Mag. 3, 470 (1958).

    Google Scholar 

  66. R.L.Fleischer, Acta Metall. 11, 203 (1961).

    Google Scholar 

  67. I.Saxl, Czech. J. Phys. B 14, 381 (1964).

    Google Scholar 

  68. B.Smola, Czech. J. Phys. B. 31, 447 (1981).

    Google Scholar 

  69. L.A.Gypen and Deruyterre, Scripta Metall. 15, 815 (1981).

    Google Scholar 

  70. O.Boser, J. Appl. Phys. 44, 1038 (1973).

    Google Scholar 

  71. P.D.Bristowe, I.Majid, C.Counterman, D.Wang, and R.W.Balluffi, Materials Science Forum 126–128, 25 (1993).

    Google Scholar 

  72. C.A. Counterman, Ph.D. thesis, MIT (1991).

  73. H.W.King, J. Mater. Sci. 1, 79 (1966).

    Google Scholar 

  74. M.Hansen and K.Anderko, Constitution of Binary Alloys (Mc-Graw Hill, New York, 1958); C.E. Dahmani, M.S. Cadeville, J.M. Sanchez and J.L. Moran-Lopez, Phys. Rev. Lett. 55, 1208 (1985).

    Google Scholar 

  75. R.Herschitz and D.N.Seidman, Acta Metall. 33, 1547, 1576 (1985).

    Google Scholar 

  76. S.M.Foiles, Phys. Rev. B 49, 14930 (1994).

    Google Scholar 

  77. J.D.Rittner, S.M.Foiles, and D.N.Seidman, Phys. Rev. B 50, 12004 (1994).

    Google Scholar 

  78. A.Brokman and R.W.Balluffi, Acta Metall. 29, 1703 (1981).

    Google Scholar 

  79. R.W.Balluffi and A.P.Sutton, Acta Metall. 35, 2177 (1987).

    Google Scholar 

  80. D.Wolf, Acta Metall. 37, 1983, 2823 (1989); Acta Metall. 38, 781, 791 (1990).

    Google Scholar 

  81. L.S.Shvindlerman and B.S.Straumal, Acta Metall. 33, 1735 (1985).

    Google Scholar 

  82. S.-M.Kuo, A.Seki, Y.Oh, and D.N.Seidman, Phys. Rev. Lett. 65, 199 (1990).

    Google Scholar 

  83. J.G.Hu and D.N.Seidman, Phys. Rev. Lett. 65, 1615 (1990).

    Google Scholar 

  84. J.G.Hu and D.N.Seidman, Scripta. Metall. Mater. 26, 633 (1992).

    Google Scholar 

  85. B.W.Krakauer and D.N.Seidman, Phys. Rev. B 65, 6724 (1993).

    Google Scholar 

  86. D.N.Seidman, B.W.Krakauer, and D.K.Chan, MSA Bullet. 24(1), 375 (1994); D.N. Seidman, B.W. Krakauer, and D. Udler, J. Phys. Chem. Solids, 55, 1035 (1994).

    Google Scholar 

  87. T.Egami, K.Maeda, and V.Vitek, Philos. Mag. 41, 883 (1980).

    Google Scholar 

  88. A.P.Sutton and V.Vitek, Phil. Trans. R. Soc. Lond. A309, 1 (1983).

    Google Scholar 

  89. G.Tréglia, B.Legrand, J.Eugène, B.Aufray, and F.Cabané, Phys. Rev. B 44, 6842 (1991).

    Google Scholar 

  90. C.Mottet, G.Tréglia, and B.Legrand, Phys. Rev. B 46, 16018 (1992); Surf. Sci. 287/288, 476 (1993).

    Google Scholar 

  91. F.Schmid and K.Binder, Phys. Rev. B 46, 13533, 13565 (1992).

    Google Scholar 

  92. M.R.Fitzsimmons and E.Burkel, Phys. Rev. B. 47, 8436 (1993).

    Google Scholar 

  93. J.E.Hilliard, M.Cohen, and B.L.Averbach, Acta Metall. 8, 26 (1960).

    Google Scholar 

  94. B.S.Bokshteyn, L.M.Klinger, G.S.Nikolsky, V.Ye.Fradkov, and L.S.Shvindlerman, Phys. Metals. Metallogr. 48, 75 (1981).

    Google Scholar 

  95. F.F.Abraham, N.H.Tsai, and G.M.Pound, Scripta Metall. 13,307 (1979); F.F. Abraham, Phys. Rev. Lett. 46, 546 (1981); F.F. Abraham and C.R. Brundle, J. Vac. Sci. Technol. 18, 506 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udler, D., Seidman, D.N. Solute-atom segregation/structure relations at high-angle (002) twist boundaries in dilute Ni−Pt alloys. Interface Sci 3, 41–73 (1995). https://doi.org/10.1007/BF00203982

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203982

Keywords

Navigation