Physics and Chemistry of Minerals

, Volume 21, Issue 8, pp 510–515 | Cite as

Pressure-induced coordination change of Ti in silicate glass: a XANES study

  • E. Paris
  • D. B. Dingwell
  • F. A. Seifert
  • A. Mottana
  • C. Romano
Article

Abstract

The effect of pressure on titanium coordination in glasses, with composition K2TiSi4O11, quenched isobarically from liquids equilibrated at high pressure (5, 10, 15, 20, 25, 30 kbar respectively) and T=1600° C has been investigated by X-ray absorption spectroscopy (XAS). The XANES spectra collected at the Ti K-edge clearly show a variation with pressure that is related to changes in the geometrical environment around the Ti atoms. By comparison with spectra of standard materials, the XANES spectra of the glasses suggest a relatively low average coordination number (near 5) in samples quenched at low pressure and a higher coordination number (near 6) in samples quenched from the highest pressure. The combination of XANES data with density and compressibility measurements supports the idea that a mixture of 6- and lower coordinated (4- and/ or 5-coordinated) Ti geometries are present in the 1 bar glass, and an increasing proportion of 6-coordinated Ti occurs in the glasses synthesized at progressively higher pressures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrens P, Aßmann S, Felsche J, Vetter S, Schulz-Ekloff G, Jaeger NI, Niemann W (1990) Metal-atom substitutes microporous materials — X-ray absorption spectroscopic studies. Proc VIth Inter Conf X-ray Absorption Fine structure, YorkGoogle Scholar
  2. Bottinga Y (1985) On isothermal compressibility of silicate liquids at high pressure. Earth Plan Sc Lett 74:350–360Google Scholar
  3. Bottinga Y, Weill D, Riebet P (1982) Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochim Cosmochim Acta 46:909–919Google Scholar
  4. Brown GE jr, Calas G, Waychunas GA, Petiau J (1988) X-ray absorption spectroscopy and its applications in mineralogy and geochemistry. In: “Spectroscopic methods in mineralogy and geology” Hawthorne F, Ed., Reviews in mineralogy 18, MSAGoogle Scholar
  5. Calas G, Petiau J (1983) Structure of oxide glasses: spectroscopic studies of local order and crystal chemistry. Geochemical implications. Bull Mineral 106:33–35Google Scholar
  6. Davoli I, Paris E (1990) Principles and recent developments in XANES spectroscopy. In “Absorption spectroscopy in mineralogy” Mottana A., & Burragato F. Eds., Elsevier, Amsterdam 206–224Google Scholar
  7. Davoli I, Paris E, Stizza S, Benfatto M, Fanfoni M, Gargano A, Bianconi A, Seifert F (1992) Structure of densified vitreous silica: silicon and oxygen XANES spectra and multiple scattering calculations. Phys Chem Minerals 19:171–175Google Scholar
  8. Dingwell DB (1992) Density of some titanium-bearing silicate liquids and the compositional dependence of the partial molar volume of TiO2. Geochim Cosmochim Acta 56:3403–3407Google Scholar
  9. Dingwell DB, Paris E, Seifert F, Mottana A, Romano C (1994) X-ray absorption study of Ti-bearing silicate glasses. Phys Chem Minerals 21:501–509Google Scholar
  10. Durben DJ, Wolf GH (1991) Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass. Phys Rev B43:2355–2363Google Scholar
  11. Fischer K (1969) Verfeinerung der Kristallstruktur von Benitoit BaTi[Si3O9], Zeits für Kristall 129:222–243Google Scholar
  12. Fleet M, Herzberg CT, Henderson GS, Crozier ED, Osborne MD, Scarfe CM (1984) Coordination of Fe, Ga and Ge in high pressure glasses by Mössbauer, Raman and X-ray absorption spectroscopy, and geological implications. Geochim Cosmochim Acta 48:1455–1466Google Scholar
  13. Galoisy L, Calas G (1993) Structural environment of nickel in silicate glass/melt systems. Part 1: Spectroscopic determination of coordination states. Geochim Cosmochim Acta 57:3613–3626Google Scholar
  14. Greegor RB, Lytle FW, Sandstrom DR, Wong J, Schultz P (1983) Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy. J Non-Cryst Solids 55:27–43Google Scholar
  15. Itié JP, Polian A, Calas G, Petiau J, Fontaine A, Tolentino H (1989) Pressure induced coordination changes in crystalline and vitreous GeO2. Phys Rev Lett 63:398–401Google Scholar
  16. Johnson T, Carmichael ISE (1987) The partial molar volume of TiO2 in multicomponent silicate melts. Geol Soc Amer Abstr Prog 19:719Google Scholar
  17. Keppler H, Rubie D (1993) Pressure-induced coordination changes of transition-metal ions in silicate melts and glasses. Nature 364:54–56Google Scholar
  18. Kohn S, Charnock JM, Henderson CMB, Greaves GN (1990) The structural environments of trace elements in dry and hydrous silicate glasses; a manganese and strontium K-edge X-ray absorption spectroscopic study. Contrib Mineral Petrol 105:359–368Google Scholar
  19. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev Mineral 24:25–64Google Scholar
  20. Lopez A, Tuilier MH, Guth JL, Delmotte L, Popas JM (1993) Titanium in MFI-type zeolites: A characterization by XANES, EXAFS, IR and 74,79Ti and 17OMAS NMR spectroscopy and H2O adsorption. J Solid State Chem 102:480–491Google Scholar
  21. Natoli CR, Benfatto M, Brouder C, Ruiz Lopez MZ, Foulis DL (1990): Multichannel multiple-scattering theory with general potentials. Phys. Rev. B42:1944–1968Google Scholar
  22. Ohtani E, Taulelle F, Angell CA (1985) A13+ coordination changes in liquid silicate under pressure. Nature 314:78–81Google Scholar
  23. Paris E, Romano C, Wu Z (1994) Application of multiple scattering calculations to the study of local geometry in silicate glasses of geological interest. Proc VIIIth Intern Conf X-ray Absorption Fine Structure XAFSVIII, BerlinGoogle Scholar
  24. Peacor DR, Buerger MJ (1962) The determination and refinement of the structure of narsarsukite, Na2TiOSi4O10. Amer Mineral 47:539–556Google Scholar
  25. Quartieri S, Antonioli G, Artioli G, Lottici PP (1993) XANES study of titanium coordination in natural pyroxenes. Eur J Mineral 5:1101–1109Google Scholar
  26. Rigden SM, Ahrens TJ, Stolper EM (1984) Densities of silicate liquids at high pressures. Science 226:1071–1074Google Scholar
  27. Ross NL, Navrotsky A (1987) The Mg2GeO4 olivine-spinel phase transition. Phys Chem Mineral 14:473–481Google Scholar
  28. Ross NL, Akaogi M, Navrotsky A, Susaki J-I, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry and vibrational spectroscopy and calculation. J Geophys Res 91(B5): 4685–4696Google Scholar
  29. Seifert FA, Mysen BO, Virgo D (1983) Raman study of densified vitreous silica. Phys Chem Glasses 24:141–145Google Scholar
  30. Seifert FA, Paris E, Dingwell DB, Mottana A, Romano C, Davoli I (1994) In-situ high temperature study of titanium coordination in Rb-silicate glass and liquid to 1400° C. Amer Mineral (submitted)Google Scholar
  31. Stebbins J, McMillan P (1989) Five and six-coordinated Si in K2Si4O9 glass quenched from 1.9 GPa and 1200° C. Amer Mineral 74:965–968Google Scholar
  32. Stolper EM, Ahrens TJ (1987) On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys Res Lett 14:1231–1233Google Scholar
  33. Stolper EM, Walker D, Hager B, Hays J (1981) Melt segregation from partially molten source regions: the importance of melt density and source region size. J Geophys Res 86:6261–6271Google Scholar
  34. Waff HF (1975) Pressure induced coordination changes in magmatic liquids. Geophys Res Lett 2:193–196Google Scholar
  35. Waychunas G (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals: effects of Ti bonding distances, Ti valence, and site geometry on absorption edge. Amer Mineral 72:89–101Google Scholar
  36. Xue X, Stebbins JF, Kanzaki M, Tronnes RG (1989) Silicon coordination and speciation changes in a silicate liquid at high pressures. Science 245:962–964Google Scholar
  37. Yarker CA, Johnson PAV, Wright AC, Wong J, Greegor RB, Lytle FW, Sinclair RN (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O-TiO2-2SiO2. J Noncryst Solids 79:117–136Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Paris
    • 1
  • D. B. Dingwell
    • 2
  • F. A. Seifert
    • 2
  • A. Mottana
    • 3
  • C. Romano
    • 2
  1. 1.Dipartimento di Scienze della TerraUniversita' di CamerinoCamerinoItaly
  2. 2.Bayerisches Geoinstitut, Universität BayreuthBayreuthGermany
  3. 3.Dipartimento di Scienze GeologicheTerza Universita' di RomaRomaItaly

Personalised recommendations