Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups

  • J. E. Kammenga
  • C. A. M. Van Gestel
  • J. Bakker
Article

Abstract

The variation of acute toxicity data among nematode species belonging to different taxonomic and ecological groups was investigated. Twelve different nematode species were extracted from the soil and directly exposed to cadmium and pentachlorophenol. LC50-values were estimated after 24, 48, 72, and 96 h of exposure in aqueous solutions. The species exhibited large differences in sensitivity. LC50-values (72 h) for pentachlorophenol ranged from 0.5 to more than 34.5 μmol/L and for cadmium from 29 to more than 800 μmol/L. These toxicity data could be described by a log-logistic distribution function.

LC50-values for cadmium were not correlated with those for pentachlorophenol. Species of the subphylum Secernentia were less sensitive to pentachlorophenol than species of the subphylum Penetrantia, while no differences were observed for cadmium. In addition, no relationship was found between toxicity data and life-history strategies. Slow colonizers (K-strategists, sensu lato) were not more sensitive to cadmium and pentachlorophenol than opportunistic species (r-strategists, sensu lato). Nematodes appeared to be as sensitive to pentachlorophenol as other soil invertebrates. Nematodes were generally tolerant to cadmium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aben WJM, Houx NWH, Leistra M (1992) Toxicity of pentachlorophenol and chlorpyrifos in soil and in solution to a nematode and a plant species. Report No. 59. DLO The Winand Staring Centre, Wageningen, The NetherlandsGoogle Scholar
  2. Anderson RV, Coleman DC, Cole CV, Elliott ET (1981) Effect of the nematodes Acrobeloides species and Mesodiplogaster lherithieri on substrate utilization and nitrogen and phosporus mineralization in soil. Ecology 62:549–555Google Scholar
  3. Anonymous (1987) Environmental Health Criteria 71, Pentachlorophenol, World Health Organization, Geneva, SwitzerlandGoogle Scholar
  4. Bongers T (1988) De nematoden van Nederland, KNNV, nr 46, Pirola, Schoorl, The Netherlands, 408 ppGoogle Scholar
  5. Boyce MS (1984) Restitution of r- and K-selection as a model of density-dependent natural selection. Ann Rev Ecol Syst 15:427–447Google Scholar
  6. Brkovic-Popovic J, Popovic M (1977) Effects of heavy metals on survival and respiration rate of tubificed worms. Part I: Effects on survival. Environ Pollut 13:65–72Google Scholar
  7. Bunt JA (1980) Migration inhibition test: New method for testing cholinesterase-inhibiting nematicides upon nematodes. Med Fac Landbouw Rijksuniv Gent 45:815–818Google Scholar
  8. Castro CE, Thomason IJ (1971) Mode of action of nematicides. In: Zuckerman BM, Mai WF, Rohde RA (eds) Plant parasitic nematodes, vol 2. Academic Press, NY, pp 289–296Google Scholar
  9. Freckman DW (1988) Bacterivorous nematodes and organic matter decomposition. In: Stinner BR, Stinner D, Rabatin S (eds) Biological interactions in soil. Elsevier, The Netherlands, pp 195–217Google Scholar
  10. Haight M, Mudry T, Pasternak J (1982) Toxicity of seven heavy metals on Panagrellus silusiae: The efficacy of the free-living nematodes as an in vivo toxicological bioassay. Nematologica 28:1–11Google Scholar
  11. Hamilton MA, Russo RC, Thurston TV (1977) Trimmed Spearmann-Kärber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719 (Correction: Environ Sci Technol 12:417)Google Scholar
  12. Howell R (1983) Heavy metals in marine nematodes: Uptake, tissue distribution and loss of copper and zinc. Mar Pollut Bull 14:263–268Google Scholar
  13. Kämpfe L, Wischgoll S (1984) Reaction of Rhabditis oxycerca after long-term exposure to aldicarb and oxamyl. Part I: General observations. Nematologica 30:193–205Google Scholar
  14. Kooijman SALM (1981) Parametric analyses of mortality rates in bioassays. Water Res 15:107–119Google Scholar
  15. — (1987) A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res 21:269–276Google Scholar
  16. Ma W (1982) Regenwormen als bio-indicators van bodemverontreiniging, Bodembescherming 15, Staatsuitgeverij, Den Haag, The NetherlandsGoogle Scholar
  17. Maggenti A (1981) General nematology. Springer-Verlag, NYGoogle Scholar
  18. Marks CF, Thomason IJ, Castro CE (1968) Dynamics of the permeation of nematodes by water, nematicides and other substances. Exp Parasitol 22:321–337Google Scholar
  19. Notenboom J, Cruys K, Hoekstra J, Van Beelen P (1992) Effect of ambient oxygen concentration upon the acute toxicity of chlorophenols and heavy metals up to the groundwater copepod Parastenocaris germanica (Crustacea). Ecotoxicol Environ Safety 24:131–143Google Scholar
  20. Oostenbrink M (1954) Een doelmatige methode voor het toetsen van aaltjesbestrijdingsmiddelen in grond met Hoplolaimus uniformis als proefdier. Meded Landb Hogesch Gent 19:377–408Google Scholar
  21. — (1960) Estimating nematode populations by some selected methods. In: Sasser JN, Jenkins WR (eds) Nematology. University of North Carolina Press, Chapel Hill, pp 85–102Google Scholar
  22. Ros JPM, Slooff W (1988) Integrated criteria document cadmium. Report No. 758476004. National Institute of Public Health and Environmental Protection, Bilthoven, The NetherlandsGoogle Scholar
  23. Schouten AJ, Van der Brugge IR (1989) Acute toxiciteit van aluminium en H+-ionen concentratie voor bodemnematoden uit een zuur en kalkrijk dennenbos. 1) Ontwikkeling en toepassing van een toets in waterig medium. Report No. 718603001. National Institute of Public Health and Environmental ProtectionGoogle Scholar
  24. Slooff W, Canton JH, Hermens JLM (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds I (Sub)acute toxicity tests. Aquat Toxicol 4:113–128PubMedGoogle Scholar
  25. Sohlenius B (1980) Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. OIKOS 34:186–194Google Scholar
  26. Van Gestel CAM, Ma W (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotoxicol Environ Safety 15:289–297Google Scholar
  27. —, — (1990) An approach to quantitative structure-activity relationships (QSARs) in earthworm toxicity studies. Chemosphere 21:1023–1033Google Scholar
  28. Van Straalen NM, Schobben JHM, De Goede RGM (1989) Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol Environ Safety 17:190–204Google Scholar
  29. Van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Safety 18:241–251Google Scholar
  30. Vranken G, Heip C (1986) Toxicity of copper, mercury and lead to a marine nematode. Mar Pollut Bull 17:453–457Google Scholar
  31. Vranken G, Vanderhaegen R, Heip C (1991) Effects of pollutants on life-history parameters of the marine nematode Monhystera disjuncta. ICES J Mar Sci 48:325–334Google Scholar
  32. Wallace HR (1977) Nematode ecology and plant disease. Edward Arnold Ltd, LondonGoogle Scholar
  33. Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol 92:557–562PubMedGoogle Scholar
  34. Whitley LS (1968) The resistance of tubuficid worms to three common pollutants. Hydrobiologia 32:193–205Google Scholar
  35. Williams PL, Dusenbery DG (1990) Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ Toxicol Chem 9:1285–1290Google Scholar
  36. Wodarz D, Aescht E, Foissner W (1992) A weighted coenotic index (WCI): Description and application to soil animal assemblages. Biol Fertil Soils 14:5–13Google Scholar
  37. Woods LE, Cole CV, Elliott RV, Anderson RV, Coleman DC (1982) Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biol Biochem 14:93–98Google Scholar
  38. Yeates GW, Coleman DC (1982) Role of nematodes in decomposition. In: Freckman DW (ed) Nematodes in soil ecosystems. Univ of Texas Press, Austin, TX, pp 55–80Google Scholar
  39. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331Google Scholar
  40. Zullini A, Peretti E (1986) Lead pollution and moss-inhabiting nematodes of an industrial area. Wat Air Soil Pollut 27:403–410Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • J. E. Kammenga
    • 1
  • C. A. M. Van Gestel
    • 2
  • J. Bakker
    • 1
  1. 1.Department of NematologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.National Institute of Public Health and Environmental ProtectionBilthovenThe Netherlands

Personalised recommendations