Skip to main content
Log in

C1840-T mutation in the human skeletal muscle ryanodine receptor gene: frequency in northern German families susceptible to malignant hyperthermia and the relationship to in vitro contracture response

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In swine, a point mutation in the ryanodine receptor gene can account for all cases of malignant hyperthermia (MH). The frequency of a corresponding mutation in humans (C1840-T) and its relationship to the in vitro contracture profile is unknown. We screened 192 patients from 28 unrelated northern German families for the C1840-T mutation in the human ryanodine receptor gene and tested for MH susceptibility using the in vitro contracture test (IVCT) according to the European MH Protocol. In our patients 106 revealed MH susceptible (MHS), 56 MH nonsusceptible and 30 MH equivocal status following IVCT. In each family one or two individuals had developed clinical signs of MH or a MH crisis. All of these patients were classified MHS. The C1840-T mutation was found in 2 of 28 families (7.1%). All eight individuals of the two families characterized by this mutation revealed MHS status following IVCT. The thresholds for halothaneand caffeine-induced contractures as well as the contracture profiles following cumulative (0.4–10.0 μmol/l every 3 min) and bolus (10 μmol/l) administration of ryanodine were found to be similar in MHS patients with and without the C1840-T mutation. In conclusion, the C1840-T mutation in the human ryanodine receptor gene is a rare abnormality in MHS families. Similar contracture profiles in the presence and absence of this mutation might imply no major functional role with respect to the contracture response. At present, molecular genetic analysis cannot replace IVCT to discover MH susceptibility in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMHG :

European Malignant Hyperthermia Group

IVCT :

in vitro contracture test

MH :

malignant hyperthermia

MHS :

MH susceptible

MHN :

MH nonsusceptible

MHE :

MH equivocal

PCR :

polymerase chain reaction

References

  1. Ball SP, Johnson KJ (1993) The genetics of malignant hyperthermia. J Med Genet 30:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Britt BA (1989) Heriditary and epidemiological aspects of malignant hyperthermia. In: Nalda Felipe MA, Gottmann S, Khambatta HJ (ed) Malignant hyperthermia. Current concepts. Normed, Englewood, pp 19–39

    Google Scholar 

  3. Britt BA (1991) Malignant hyperthermia. Pathology, pharmacology and therapy In: Schonbaum E, Lomax P (ed) Thermoregulation. Pergamon Press, New York, pp 179–292

    Google Scholar 

  4. Britt BA, Kalow W (1970) Malignant hyperthermia: a statistical review. Can Anaesth Soc J 17:293–315

    Article  CAS  PubMed  Google Scholar 

  5. Carroll JB (1987) Increased incidence of masseter spasm in children with strabismus anesthetized with halothane and succinylcholine. Anesthesiology 67:559–561

    Article  CAS  PubMed  Google Scholar 

  6. Denborough MA (1980) The pathopharmacology of malignant hyperpyrexia. Pharma Ther 9:357–365

    Article  CAS  Google Scholar 

  7. Deufel T, Golla A, Iles D, Meidl A, Meitinger T, Schindelhauer D, DeVries A, Pongratz D, MacLennan DH, Johnson KJ, Lehmann-Horn F (1992) Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Am J Hum Genet 50:1151–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellis FR, Harriman DGF, Keaney NP, Kyei-Mensah K, Tyrrell JH (1971) Halothane-induced muscle contracture as a cause of hyperpyrexia. Br J Anaesth 43:721–722

    CAS  PubMed  Google Scholar 

  9. Ellis FR, Halsall P, Harriman DGF (1986) The work of the Leeds Malignant Hyperpyrexia Investigation Unit, 1971–1984. Anaesthesia 41:809–815

    Article  CAS  PubMed  Google Scholar 

  10. European Malignant Hyperpyrexia Group (1984) A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. Br J Anaesth 56:1267–1269

    Article  Google Scholar 

  11. Fagerlund T, Islander G, Ranklev E, Harbitz I, Hauge JG, Mokleby E, Berg K (1992) Genetic recombination between malignant hyperthermia and calcium release channel in skeletal muscle. Clin Genet 41:270–272

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher R, Blennow G, Olsson AK, Ranklev E, Tornebrant K (1982) Malignant hyperthermia in a myopathic child. Prolonged post-operative course requiring dantrolene. Acta Anaesth Scand 26:435–438

    Article  CAS  PubMed  Google Scholar 

  13. Foster PS (1990) Malignant hyperpyrexia. Int J Biochem 22:1217–1222

    Article  CAS  PubMed  Google Scholar 

  14. Fujii J, Otsu K, Zorzato F, DeLeon S, Khanna VK, Weiler J, O'Brien PJ, MacLennan DH (1991) Identification of a mutation in the porcine ryanodine receptor that is associated with malignant hyperthermia. Science 253:448–451

    Article  CAS  PubMed  Google Scholar 

  15. Gillard EF, Otsu K, Fujii J, Khanna VK, DeLeon S, Derdemezi J, Britt BA, Duff CL, Worton RG, MacLennan DH (1991) A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11:751–755

    Article  CAS  PubMed  Google Scholar 

  16. Gronert GA (1986) Malignant hyperthermia In: Engel AG, Banker BQ (ed) Myology. Basic and clinical. McGraw-Hill, New York, pp 1763–1784

    Google Scholar 

  17. Gronert GA, Mott J, Lee J (1988) Aetiology of malignant hyperthermia. Br J Anaesth 60:253–267

    Article  CAS  PubMed  Google Scholar 

  18. Harbitz I, Chowdhary B, Thomsen P, Davies W, Kaufmann U, Kran S, Gustavsson I, Christensen K, Hauge J (1990) Assignment of the porcine calcium release channel gene, a candidate for the malignant hyperthermia locus, to the 6p11-q21 segment of chromosome 6. Genomics 8:243–248

    Article  CAS  PubMed  Google Scholar 

  19. Hopkins PM, Ellis FR, Halsall PJ (1991) Ryanodine contracture: a potentially specific in vitro diagnostic test for malignant hyperthermia. Br. J. Anaesth. 66:611–613

    Article  CAS  PubMed  Google Scholar 

  20. Kalow W, Britt BA, Terraeau ME, Haist C (1970) Metabolic error of muscle metabolism after recovery from malignant hyperthermia. Lancet II: 895–898

    Article  Google Scholar 

  21. Levitt JC, Nouri N, Jedlicka AE, McKusick VA, Marks AR, Shutack JG, Fletcher JE, Rosenberg H, Meyers DA (1991) Evidence for genetic heterogeneity in malignant hyperthermia susceptibility. Genomics 11:543–547

    Article  CAS  PubMed  Google Scholar 

  22. MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, Frodis W, Britt BA, Worton RG (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343:559–561

    Article  CAS  PubMed  Google Scholar 

  23. MacLennan DH, Phillips MS (1992) Malignant hyperthermia. Science 256:789–794

    Article  CAS  PubMed  Google Scholar 

  24. McCarthy TV, Healy S, Heffron JJA, Lehane M, Deufel T, Lehmann-Horn F, Farral M, Johnson K (1990) Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12–13,2. Nature 343:562–563

    Article  CAS  PubMed  Google Scholar 

  25. Mickelson JR, Ross JA, Reed BK, Louis CF (1986) Enhanced Ca+ + induced calcium release by isolated sarcoplasmic reticulum vesicles from malignant hyperthermia susceptible pig muscle. Biophys Biochem Acta 862:318–328

    Article  CAS  Google Scholar 

  26. Mickelson JR, Gallant EM, Litterer LA, Johnson KM, Rempel WE, Louis CF (1988) Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem 263:9310–9315

    CAS  PubMed  Google Scholar 

  27. Ørding H (1985) Incidence of malignant hyperthermia in Denmark. Anesth Analg 64:700–704

    PubMed  Google Scholar 

  28. Otsu K, Philips MS, Khanna V, DeLeon S, MacLennan DH (1992) Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics 13:835–837

    Article  CAS  PubMed  Google Scholar 

  29. Roewer N (1991) Maligne Hyperthermie heute. Anaesthesiol Intensivmed Notfallmed Schmerzther 26:431–449

    Article  CAS  Google Scholar 

  30. Singh S, Fang B, Fritze G, Agarwal D, Goedde HW (1990) Genotyping of alcohol dehydrogenase and aldehyde dehydrogenase in blood of koreans, Chinese, and Japanese by using PCR amplification and dot blot hybridization BTF 3. Adv Mol Genet 2:109–119

    Google Scholar 

  31. Wagenknecht T, Grassucci R, Frank, Saito A, Inui M, Fleischer S (1989) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338:167–170

    Article  CAS  PubMed  Google Scholar 

  32. Wappler F, Roewer N, Lenzen C, Köchling A, Scholz J, Steinfath M, Schulte am Esch J (1994) High-purity ryanodine and 9,21-dehydroryanodine for in vitro diagnosis of malignant hyperthermia in man. Br. J. Anaesth. 72:240–242

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinfath, M., Singh, S., Scholz, J. et al. C1840-T mutation in the human skeletal muscle ryanodine receptor gene: frequency in northern German families susceptible to malignant hyperthermia and the relationship to in vitro contracture response. J Mol Med 73, 35–40 (1995). https://doi.org/10.1007/BF00203617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203617

Key words

Navigation